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GENERAL INTRODUCTION 

To someone who could grasp the 

universe from one unified viewpoint, 

the entire creation would appear as 

a unique fact and a great truth. 

J. D'Alembert 

The fundamental physical event is the collision; the primary process 

whereby information is obtained and exchanged. Seeking to understand the 

general nature of the collision and the participants, the event can be 

divided phenomenologically into: 

1. an initial state 

2. an intermediate state 

3. a final state. 

The diversity of the manifestations and the information contained in the 

character of the collision event have required the development of 

numerous theoretical and experimental approaches. 

The molecular beam technique allows the preparation and study of 

unique species in an isolated environment. The singular nature of this 

environment permits a variety of spectroscopic techniques to be applied 

to the unperturbed species over relatively long time scales. Originally 

"simple" effusive sources, such as Knudsen ovens, were exclusively used; 

primarily due to the ease of maintaining the required vacuum. However, 

improvements in vacuum technology have allowed implementation of nonef-

fusive sources, such as the supersonic nozzle source, with dramatic 

increases in the intensity of the collision participant(s) enabling the 

investigation of even less prominent processes. Further, an ever 
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increasing array of sensitive and specific detection techniques, each 

with its own advantages and disadvantages, are bringing more and more 

detail to our knowledge of molecular processes. 

The first part of this thesis examines the ionizing collision of a 

vacuum ultraviolet (VUV) photon with a molecular species. In general, 

the number of parameters accessible to experimental control or observa­

tion is limited: 

1. initial state characteristics - the excitation energy (fito) 

delivered to the (state selected) molecular system; 

2. intermediate state characteristics - e.g., lifetimes; 

3. final state characteristics - energy partitioning, spacial 

distribution, mass charge, etc. 

The complexity of photoionization and subsequent events demands a number 

of techniques providing complementary information. For example, photo-

electron spectroscopy supplies information about the character and 

energies of ion states while photoionization spectroscopy provides 

insight into ionization processes. Specifically, this first part 

illustrates the combination of photoionization mass spectrometry with 

the supersonic molecular beam technique applied to hydrogen sulfide 

(HgS). The mass spectrometric analysis of the positively charged 

fragments as a function of VUV photon energy yields appearance energies, 

branching ratios, etc. for various ions and processes. The supersonic 

molecular beam technique not only provides the required high intensity 

for the species of interest, but substantially improves energetic reso­

lution by greatly reducing the vibrational and rotational distributions 
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over those of room temperature. Essentially, this is initial state 

selection. Additionally, it is possible to synthesize van der Waals 

clusters (e.g., (HgS)^, n = 2,3) and observe what are equivalent to very 

low kinetic energy collisions between state selected or, in an alternate 

view, the unimolecular decay of a state-selected collision complex. 

Part II describes the design of a unique neutral-neutral species 

crossed molecular beam apparatus - The Rotating Source Apparatus. 

Again, the general features of the collision accessible experimentally 

are limited: 

1. the initial state - internal energy and velocity; 

3. the final state - product identity, angular distribution, 

energy partitioning, etc. 

Although there are valid and convincing arguments that apparatus design 

can only be optimized on an individual case by case basis, the immense 

expense and time required make this experimental approach unrealistic. 

However, to permit incorporation of a variety of diverse experiments and 

techniques requires a flexible and, therefore, complex apparatus. These 

conflicting precepts of tailored versus general, simple versus complex, 

inexpense versus costly, etc. have made the evolution of crossed beam 

apparati slow but diverse. However, rapidly new "tools", most impor­

tantly involving the laser, have become available and attractive. Still, 

in view of the expense of the construction venture, the prospect of 

sacrificing previous useful design features is uninviting. With these 

thoughts in mind, the rotating source apparatus was designed. 
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Explanation of Thesis Format 

The different topics of this thesis allow a clear separation into a 

Part I concerned with the photoionization studies and a Part II which 

describes the rotating source apparatus. Part I is broken, after a 

brief introduction, into two sections each presented in the format of 

a publication. Part II, although also divided, is formatted to allow a 

clear presentation of the rotating source apparatus. All references, 

illustrations, etc. are separated among the two parts to avoid confusion. 



www.manaraa.com

5 

PART I. PHOTOIONIZATION OF HYDROGEN SULFIDE AND ITS CLUSTERS 

Introduction 
O 0 

Incidence of vacuum ultraviolet (2000 A - 2 A) photons on a system 

of molecular species may produce numerous results: collisional ioniza­

tion, charge transfer, chemionization, direct photoionization, auto-

ionization, predissociation, ion-pair formation, reradiation, etc. 

Those processes requiring participation of a third body are largely 

eliminated by the molecular beam technique. Of the remaining processes, 

only those leading to positive ions are to be observed here 

experimentally. 

Essentially the experimental arrangement consists of a monochromatic 

VUV photon beam intersecting a molecular beam at a 90 degree angle and 

subsequent extraction, sorting by mass-to-charge ratio, and counting of 

the positive ions formed. The ratio of the ion intensity to the incident 

photon intensity at a specific wavelength is referred to as the photo­

ionization efficiency (PIE). Most photoionization spectra are presented 

as the PIE versus the wavelength (in Angstroms). 

The most prominent features of the plotted PIE data are due to 

direct photoionization and autoionization processes. A brief review of 

these processes, with emphasizing physical insight instead of mathemati­

cal thoroughness, will prove helpful. 

Direct photoionization 

In the dipole approximation for photoabsorption, the cross section 

for absorption of a photon of polarization x and energy hw is [1], 
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a - |<n |r |A>*A 1^6( - -tlco) 

Thus, the initial and final states of the system, labeled A and n, of 

energies and E_, respectively, are connected. The term of interest 

is 

<0|f|A> 

where f represents the sum over all individual electron positions, f^; 

r H z r. 
j ^ 

In direct photoionization, the final state (n) is that of an ion ($*) and 

an unbound electron (4^). 

Invoking the Born-Oppenheimer approximation [2] allows the separa­

tion of the system states into products of electronic and nuclear 

wavefunctions, 

$(Ê,f) = 4'(r;fî)X(^) 

where ^ indicates the nuclear coordinates. Reexamining the matrix 

element. 

Taking advantage of the fact that r operates only on the electronic 

wavefunctions, the matrix element can be rewritten 
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e<n''|r|A> = <X^(^){Y^,f,Jer|Y^}X^(^)> 

= <X^(^)|#,E)|X^(^)> 

The electric dipole transition moment, is a function of the 

internuclear distances, and the continuum wavefunction of the unbound 

electron. Assuming to be independent of ^ is the Franck-Condon 

(F.C.) approximation. Because most spectroscopy involves the ground 

state, the transition moment is evaluated for the equilibrium nuclear 

configuration; t Therefore, the photoionization cross section 

becomes proportional to the product of two terms which can be con­

sidered separately; 

*F.C. |M(3gq,E)| 

(At this point, the mathematical orchestra has been arranged and may be 

played for physical insight.) 

Assume the transition involves strictly a single electron, labeled 

i, which occupied the one electron bound orbital in the ground state 

and upon ionization the bound state ijj^, then the transition moment 

would become 

One sees that because the ground state wavefunction is localized, the 

asymtotic region of the continuum wavefunction is not of interest. 

Further assume, for ease of visualization, the atomic case of 

ionization of a bound 2p electron to an unbound state of d angular 



www.manaraa.com

8 

momentum. The 2p radial wavefunction is nodeless and positive, and near 

threshold (i.e., e ~ 0), the first node of the d wavefunction is also 

positive near the origin. Therefore, the matrix element is positive and 

fairly large. However, as the kinetic energy (e) of the free electron 

increases above threshold, the wavelength of the departing electron 

decreases bringing in nodes and loops causing cancellation and reducing 

the matrix element. Consider now ionization from a 3p orbital into a d 

continuum state. Because the 3p wavefunction has a node and at its 

maximum is negative, the matrix element is negative near threshold. 

Again as e increases, cancellation occurs and the matrix element becomes 

increasingly positive and eventually changes sign. At one point, the 

matrix element passes through zero and the cross section displays a 

"Cooper Minumum" [3]. Because the wavelength changes slowly with e, this 

general behavior of the cross section is exhibited over several 

Rydbergs or hundreds of Angstroms above threshold. 

If one simultaneously addressed the possibility of the transition 

np ES versus np cd, consideration of the effective potential, which 

is strongly dependent on the angular momentum, would complicate matters. 

The presence of the centrifugal barrier can prejudice ionization 

according to the angular momentum n due to the inability of the higher 

£ state to penetrate [4,5]. In the molecular case (e.g., COg and Ng 

[6]), these barrier effects manifest themselves as "shape resonances" 

which are several eV broad. 

Returning to consider the first term in the cross section expres­

sion Op g , and neglecting interaction between vibration and rotation, 
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one can separate the nuclear states into products of vibrational (x) and 

rotational (e) wavefunctions: 

Ignoring the rotational contribution [7], Op ^ becomes proportional to 

the square of the overlap integral of the vibrational wavefunctions 

referred to as the Franck-Condon factor; 

''F.C. ' ' 

This again emphasizes the "vertical" nature inherent in the Franck-

Condon approximation in that the value of the overlap integral is 

determined by the oscillation of the upper state vibrational wavefunc-

tion Xp directly above the ground state wavefunction x^- Therefore, 

the relative positions of the potentials and their shapes are important. 

(This concept and the following arguments are most easily envisioned 

for the diatomic case.) 

In ionization, the bonding, antibonding, or nonbonding character 

of the removed electron is manifest in the shift, and the change in 

depth and curvature of the upper ionized state potential from that of 

the ground state. The potential curvature and depth influence the rate 

of oscillation of the wavefunction as well as the level spacing and are 

held as being of secondary importance relative to the effect of well 

displacement on the overlap integral. For instance, removal of a 

nonbonding electron leaves the position of the upper potential unchanged. 

Thus, the F.C. factor favors the transition from the ground vibrational 
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State of the neutral to the ground vibrational of the ion, x^(0) x^(0), 

over all others. The energy at which this occurs is termed the adiabatic 

ionization energy. Removal of a bonding or an antibonding electron 

shifts the ion potential and, in general, the most favored overlap will 

take place between some other final ion vibrational state, X/\(0) 

(V^O). This most probable transition occurs at the vertical ioniza­

tion energy. In the simple diatomic case, the "classic" example is NO 

[8], which reflects this F.C. picture in the step-like structure of the 

PIE curve with the height of each step proportional to the F.C. factor. 

Autoionization 

Each rovibronic state of a molecular ion can be the ionization limit 

for a series of discrete, electronically bound states. The physical 

basis for these Rydberg series is the quasi-hydrogenic situation of a 

single, highly excited electron about an ionic core. For those states 

above the first ionization limit, coupling to continuum states is 

energetically possible and the subsequent formation of an ion and 

unbound electron is termed autoionization. This process is viewed as 

occurring in two steps; photoexcitation from the initial state A to the 

discrete state a* followed by autoionization to produce the ionic state 

In terms of Fermi's Golden Rule [9], the autoionization rate becomes 

kg = -^ l<fi'^|W|fi*>l^ p(e(fi"^)) 

Because various interactions, W, are possible, various types of auto­

ionization take place. Where the source of interaction is electron-
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electron repulsion, the autoionization is termed electron. Perturbation 

by nuclear motions are ascribed to either vibrational or rotational 

autoionization. The general theory of electronic autoionization of Fano 

[10] has been vigorously developed [11,12,13] and applied to autoioniza­

tion resonances (line shapes) in photoionization spectra (e.g., 

[14,15]). 

The coupling of nuclear and electronic motion represents the break­

down of the Born-Oppenheimer (BO) approximation. Guided by the 

adiabatic principle, on which the BO approximation is founded, one can 

gauge where to expect this failure. Consider the diatomic molecule NO 

for which the average vibrational spacing Ae^ of the (X^z^) ion is 

0.286 eV [16]. The period, of an electron in a Bohr orbit of 

quantum number n is 

= (1.52 X lO'lG s)n^ 

The adiabatic principle can be formulated in terms of the Massey 

parameter, and one expects coupling for 

AEY 
^ ^ IT ̂  T^n ~ 1 

This implies for n % 8, coupling between vibrational and electron 

motion should be highly probable. Series assignments on the first four 

vibrational steps of the NO PIE curve show for n < 8, multiple changes 

in vibrational quantum number v are common. However, for n > 8, 

vibrational changes follow the AV = -1 propensity rule developed by 

Berry [17]. 
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Rotational considerations can be similarly cast, however, it must 

be remembered that the adiabatic principle does not argue for a particu­

lar mechanism (i.e., electronic, vibrational, or rotational autoioniza-

tion), the elucidation of which requires detailed theoretical 

considerations. 
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SECTION I. MOLECULAR BEAM PHOTOIONIZATION STUDY OF HgS 

Introduction 

The HgS* ions have been the subject of many experimental studies 

by means of photoelectron spectroscopy [1-10] absorption [11-16] and 

emission spectroscopy [6,17] electron impact [18-20], and photoioniza-

tion mass spectrometry [16,21-23]. The detailed analyses [6,24] of the 

high resolution mission spectrum of HgS^ obtained by Horani et al. [17] 

and the high resolution photoelectron study of Karlsson et al. [10] have 

provided considerable information about the potential energy surfaces of 

the X^Bp A^Ap and states of HgS^. The recent ab initio calcula­

tion [25,26] of a correlation diagram for these three doublet and 

lowest quartet electronic states of HgS^ has also been able to provide 

a rationalization for the dissociation mechanisms of HgS* observed in 

the studies by photoionization mass spectrometry [22] and photoelectron 

photoion coincidence spectroscopy [27]. By contrast, information con­

cerning Rydberg states converging to the three lowest doublet states of 

HgS* is less abundant. Previous absorption studies [11-16] mostly con­

centrated on investigations of Rydberg states below the ionization 

energy (IE) of HgS*. To our knowledge, the nature of Rydberg levels 

*^2 "~2 
located above the IE of HgS which converge to the A A^ and B Bg state of 

HgS^ has not been explored previously. 

The photoionization efficiency (PIE) curves for HgS* obtained by 

Dibeler and Liston [22] and Walters and Biais [23] clearly reveal rich 

autoionizing Rydberg structures in the region 650-1190 A. In order to 
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examine these autoionizing Rydberg features in details, we have per­

formed a higher resolution photoionization mass spectrometric study of 

HgS using the molecular beam method. This report presents the results 

and an analysis of our experiment. The PIE spectra for (H2S)2, 

and their fragments have also been obtained. The analysis of the dimer 

and trimer systems will be discussed in Section II. 

Experimental 

The experimental arrangement and procedures were essentially the 

same as that described previously [28]. Briefly, the apparatus, shown 

schematically in Figure 1, consists of a 3 meter near-normal incidence 

vacuum ultraviolet (VUV) monochromator (McPherson 2253M), a supersonic 

molecular beam production system, a capillary discharge lamp, a VUV 

light detector, and a quadrupole mass spectrometer for ion detection. 

The grating employed in this study was a Bausch and Lomb 1200 lines mm~^ 

MgFg-coated aluminum grating blazed at 1360 A. Depending on the wave­

length region, the hydrogen many-lined pseudocontinuum, the argon con­

tinuum, or the helium Hopfield continuum was chosen as the light source. 

The hydrogen sulfide was a commercial product (Matteson Gas Prod­

ucts, Joliet, IL 60434) with a quoted purity of >99.6%. The HgS 

molecular beam was produced by supersonic expansion through a 120 ym 

diameter stainless steel nozzle at a nozzle temperature of ~290 K and a 

stagnation pressure of ^520 Torr. The arrangement is diagrammed in 

Fig. 2. 
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Figure 1. Side view of the photoionization apparatus. (1) monochromator, (2) X-Y translational 
bench, (3) liquid nitrogen trapped 6 in. diffusion pump, (4) monochromator stand, (5) 
light source, (6) differential pumping arm, (7) entrance slit, (8) to Roots blower 
pumping system, (9) to ejector pump, (10) Daly type particle detector, (11) scattering 
chamber, (12) quadrupole mass spectrometer, (13) flexible coupling bellows, (14) photon 
detector, (15) sodium salicylate coated quartz window, (16) exit slit, (17) photoioniza­
tion center, (18) 10 in. diffusion pump system, and (19) stand for scattering chamber 
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Figure 2. Cross sectional view of the differential pumping arrangement of the molecular beam pro­
duction system, ionization region, ion optics, and quadrupole mass spectrometer 
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The wavelength resolutions used in this study were 1.4 A and 

0.14 A (FWHM). Typical counting times were 6s, and ion counts of H^S^, 

accumulated at each point in the high resolution (0.14 A FWHM) study, 

were >8000 counts. The counting rate for HgS^, observed in the low 

resolution (1.4 A FWHM) experiment, was usually two orders of magnitude 

greater than that in the high resolution study. Depending on the wave­

length resolutions used, data were plotted at intervals of 0.05, 0.1, 

0.25, or 0.5 A. The PIE data for and HS^ from HgS were obtained 

only with a wavelength resolution of 1.4 A and were plotted at intervals 

of 0.25 A. Wavelength calibrations were made by using appropriate 

known atomic resonance lines, or Hg emission lines when the Hg pseudo-

continuum was used [29]. 

Results and Discussion 

Figures 3(a) and (b) show the PIE curves (1.4 A FWHM) for HgS* in 

the regions 948-1190 and 645-995 A obtained by using the hydrogen many-

lined pseudocontinuum and the helium Hopfield continuum, respectively. 

We found excellent agreement between the PIE data recorded in the over­

lapping 948-995 A using the two light sources. The high resolution PIE 

curves for HgS* in the regions 954-996 and ^768-900 A obtained using a 

wavelength resolution of 0.14 A (FWHM) and the helium Hopfield con­

tinuum are shown in Figs. 4 and 5, respectively. The data points which 

were found to be affected by strong atomic resonance lines superimposed 

on the helium Hopfield continuum were excluded in the figures. The com­

parison between the high and low resolution spectra shows that a wave­

length resolution of 1.4 A (FWHM) is sufficient to resolve essentially 
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Figure 3. PIE curve for in the region 645-1190 A. (a) PIE curve (1.4 A FWHM) for H2S* in the 
region 948-1190 Â obtained using the hydrogen many-lined pseudocontinuum as the light 
source; (b) PIE curve (1.4 Â FWHM) for H2S in the region 534-995 Â obtained using the 
helium Hopfield continuum as the light source 
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www.manaraa.com

-4 

9ÔÔ ' 89Ô ' 880 ' 87Ô ' 860 ' 850 84Ô ' 830 ' Ëô ' 810 ' 800 ' 790 ' 7œ 
Â 

Figure 5. High resolution (0.14 A FWHM) PIE curve for H^S^ in the region 768-900 A 
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all autoionizing Rydberg structures. A high resolution (0.14 A FWHM) 
+ ° 

PIE curve for HgS in the region 1070-1190 A was also measured by using 

the argon continuum. Since this high resolution curve reveals no new 

structures other than those appearing in the low resolution spectrum, 
o ^ 

only a section (1173-1188 A) of the resolution data for HgS near the 

threshold was plotted in Fig. 3(a) to show the ionizing threshold be­

havior for HgS in more detail. 

In the one-electron approximation, the ground state electronic con­

figuration for HgS is (Iaj)^(2aj)^(lb2)^(3aj)^(lbj)^(4aj)^(2b2)^(5aj)^ 

X (2b^)^X^A^. Upon ionization from the 2b^, 5a^, and Zbg valence 

orbital s, the ionic states formed are the X A A^, and B Bg states, 

~ 2  
respectively. The adiabatic ionization energies for the X (10.466 

eV), (12.777 eV), and (14.643 eV) states of HgS* determined 

by photoelectron spectroscopy [10] are indicated by arrows in the PIE 

curves for in Figs. 3(a) and (b). No apparent structure correlating 

to the onsets of these states can be seen, with the exception of that 

for the X states, where a sharp step-like feature was found. The 

position of this step was located at 1185.3 ± 1.5 A in the low resolution 

PIE curve for (Fig. 3(a)). 
o ^ 

The high resolution (0.14 A FWHM) spectrum for H^S near the 

threshold shows that the PIE for decreases rapidly in the interval 
o 

of 1184.95-1185.55 A and then tails away more gradually toward longer 

wavelengths. There seems to be a break or change in slope between the 

tailing structure and the rapidly rising step. The tailing structure 

found here is similar to that observed in the CgHg system [30], but more 
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severe than those observed in other triatomic molecular systems [28,31, 

32]. It is possible that this substantial tailing structure is indica­

tive of higher rotational temperatures in the HgS beam than those 

attained on other triatomic molecular systems such as CSg [28], OCS [31], 

and SOg [32] which have smaller rotational quanta than that of HgS. 

The other possible mechanism which can give rise to HgS* below the IE 

of HgS is field ionization of HgS in very high Rydberg states. Since 

the rotational and vibrational temperatures of HgS after the supersonic 

expansion are likely to be different, it is difficult to make a 

quantitative analysis of the threshold and estimate the contributions 

to this tailing structure from different rotational and vibrational 

degrees of freedom. Assuming the tailing structure to be hot bands, the 

midpoint of the rapidly rising step at 1185.25 A has been taken to be 

~ 2  
the IE of the X state of HgS. Based on this assumption, the uncer­

tainty of the IE, which is derived from the wavelength span of the 
0 

rapidly rising step, is ±0.3 A. 

The value of 10.4607 ± 0.0026 eV (1185.25 ± 0.30 A) for the IE for 

" 7  + 
the X Bj^ state of HgS determined here was found to be slightly lower 

than the values of 10.466 ± 0.002 eV determined by Karlsson et al. [10] 

in a high resolution photoelectron measurement and by Masuko et al. [15] 

in a photoabsorption study. This slight difference may arise partly 

from higher rotational temperatures of HgS in the latter studies. 

Karlsson et al. [10] note that the photoelectron spectrum of the vibra-

~ 2  
tional band corresponding to the 0-0 transition to the X B^ state has a 
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conspicuous shape. A comparison of values for the IE of HgS^ obtained 

previously by various methods can be found in Table I of Ref. 23. 

It is obvious that the PIE curve for is dominated by auto-

~ 2  
ionizing vibrational structures. Stemming from the fact that the A A^ 

~ 2  and B Bg states are the only ionic states lying in this energy range 

and that the IE of the next higher ionic state (C^A^) is 22 eV (564 A), 

it is logical to assume that the autoionizing Rydberg states in the 

region ~800-1190 A are members of Rydberg series converging to the Â^A^ 

~ 2  
and B B^ states. 

Spectrum of HgS* in the 1040-1190 A region 

The structures observed in this region are also discernible in the 

PIE curve and absorption spectrum of HgS obtained previously by 

Watanabe and Jursa [16]. They show that only ^30-60% of the molecules, 

after absorbing photons in this region, will lead to dissociation. 

Thus, the diffuse autoionizing features appearing in this portion of 

the PIE spectrum may be ascribed to autoionization as well as predis-

sociation. The weak peak at 1182.2 A was found to coincide with the 

member (n = 7) of the DD'E Rydberg series [15] converging to the 

vibrationally excited X^B^ (1,0,0) state of at 1151 A (10.722 eV) 

identified by Masuko et al. [15] in an absorption study. However, a 

search for the higher members of this series was unsuccessful. 

At wavelengths shorter than 1114 A, more pronounced features were 

found. The shapes of these structures are irregular and many of these 

bands appear to be double peaking. The positions of the centers of 
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these autoiom'zing bands are listed in Table 1. The average vibrational 

spacing of this progression is 982 cm"^. Since this value is 

close to the vg vibrational frequency (^#00 cm~^) [2,5,7,24] of the 

state of HgS*, this autoionizing progression is considered to originate 

~2 from a member of a Rydberg series converging to the A A^ state. The 

vibronic structure of the 5a^ photoelectron band was found to have a 

complex pattern [10] which has been attributed to the effect of the 

Renner-Teller vibronic interaction [6,24]. Thus, the band structure 

cannot be assigned only in terms of the vibrational quantum number 

the splittings of the vibrational energy levels due to different 

angular momenta (K) must also be considered. The assignment [10] of 

the individual structures of the 5a^ photoelectron band was based on a 

comparison with the electronic emission spectrum of HgS*, which, in turn, 

has been interpreted by comparison to extensive theoretical calcula­

tions [24]. The assignments of autoionizing Rydberg structures observed 

here follows the assignment of the 5a^ photoelectron band by Karlsson 

et al. [10]. In view of the fact that the first few strong peak-like 

structures in the 5a^ photoelectron band can be correlated with the 

s-bands of the vibrational mode, and that the splittings of the auto­

ionizing vibrational bands observed in this region are not unambiguously 

identified, this autoionizating vibrational progression was fitted into 

~2 
the Rydberg equation using the I Es of the (v2,z)-bands of the A A^ state 

- 1  ®  
as the convergence limits. Assuming 89847 cm (1113 A) to be the origin 

of the 0-0 transition, the average value for the effective principal 

quantum number (n*) was found to be 2.909. Since the approximate quantum 
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Table 1. Progression of vibrational bands of HgS in the region 

1040-1120 Â 
__ _ _ _ 

Rydberg state A state of HgS Term values n* Assignment 

v„(cni-b' V (cm-l)b 
« * '  

(cm'l) 
^2 K 

89847 103053 13206 2.883 0 z 

90744 103972 132228 2.880 1 z 

91743 104900 13157 2.888 2 E 

92851 105803 12952 2.911 3 E 

93853 106666 12813 2.927 4 E 

94742 107497 12755 2.933 5 E 

95740 108408 

Average 

12668 

12968 

2.943 

2.909 

6 E 

AVav=982 AVav=891 

®The positions of the centers of autoionizing vibrational bands. 

'^Reference 10. 

^The term value is equal tov^-v^ = R/n*^, where R (=109736 cm~^) 

and n* are the Rydberg constant for HgS and the effective principal 

quantum number, respectively. 
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defects 6 in Rydberg series of the free atomic sulfur are <5 = 2.0 for 

ns, 1.6 for np, and 0.3 for nd orbitals [33], it is most likely that 

this Rydberg state involves an s-type orbital having a quantum defect 

6 = 2.09 and this discrete structure can be tentatively assigned to the 

5a^ -4- 5sa^ transition. We note that a Rydberg absorption feature which 

was assigned to be 2b^ 5sa^ transition and has an effective principal 

quantum number of 2.89 was reported by Masuko et al. [15]. 

Spectrum of HgS^ in the range 920-1040 A 

The broad structure at ~1037 A seems to separate the vibrational 

progressions on the low and high energy sides with quite different peak 

shapes. The average spacing of the vibrational bands found on the high 

energy side is approximately 900 cm~^, which is lower than that of the 
o 

vibrational bands in the region 1040-1120 A by ^,80 cm" . It is possible 

that the irregular shape of the structure at ~1037 A results from the 

extensive overlap of autoionizing vibrational bands originating from two 

different progressions. According to the study of Masuko et al. [15], 

the effective principal quantum number for the 2b^ -4- 6sa^ transition is 

equal to 4.10. If the 5a^ Ssa^ transition has a similar n* value, the 

origin of the 0-0 transition of this Rydberg transition is predicted to 

be at ^1036 A. Interestingly, in a close examination, the pattern of 

autoionizing peaks in the region 925-1040 A was found to be similar to 

that of the 5a^ photoelectron band. That is, after a series of regu­

larly spaced peaks, the spacing becomes irregular and changes to a 

series of peaks with approximately half the initial spacing. These 
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observations are taken as evidence that the autoionizing vibrational pro­

gression observed in this region originates from a new Rydberg state 

~2 which is similar in structure to that of the A state. 

The positions of the autoionizing peaks resolved in this region 

are listed in Table 2 and fit to the Rydberg equation using the I Es of 

the the A A^ (vg.K) states as the convergence limits. Assuming the peak 

at 1033.5 A to be the origin of the 0-0 transition of this progression, 

the average value for n* was found to be 4.124. The good agreement 

between the latter n*-value and that of the 2b^ 6sa^ transition 

indicates that the discrete structure appearing in this region belongs 

to the member (n = 6) of the Rydberg transitions 5a^ nsa^. Similar 

Rydberg transitions, 3a^ -»• nsa^, were assigned to a Rydberg series of 

HgO by Wang et al. [34] in a photoabsorption measurement. Although 

many of the peaks corresponding to the A-, (p-, and r-bands have not 

been resolved, the expected positions of these bands, based on the 

assignment of the 5a^ photoelectron band by Karlsson et al. [10], are 

also indicated in Fig. 3(a) to illustrate the similarity of the pattern 

of autoionizing peaks in this region and those peaks observed in the 

high resolution photoelectron spectrum of HgS. 

Spectrum of HgS* in the region 645-920 A 

Above the IE for the A A^ state, the PIE for HgS increases gradu­

ally until, at approximately 926 A, a sharp break appears in the spec-

+ 
trum and the PIE for HgS starts to decrease towards higher photon 

energies. As shown in Fig. 3(b), the break found in the spectrum is in 
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Table 2. Progression of vibrational bands of HgS in the region 

910-1040 Â 

Rydberg state state of HgS* Term values^ n* Assignment' 

v^(cm"^)^ vjcm'b^ (cm"^) 
'^2 K 

96759 103053 6294 4.176 0 Z 

97704 103972 6268 4.184 1 Z 

98570 104900 6329 4.164 2 z 

99552 

99701^ 

100452 

100746^ 

101235 

105803 

106029 
106166 

106666 

106868 
107142 

107497 

6251 

6397® 

6214 

6259® 

6262 

4.190 

4.141 

4.202 

4.187 

4.186 

3 

3 
3 

4 

4 
4 

5 

z 
A 
<P 
Z 

A 

S 

101698 107844^ 6146 4.226 5 A 

102124 108408 6284 4.179 6 D 

102638 108780 6142 4.227 6 n 

103040 109328 6288 4.178 7 z 

®The peak positions of autoionizing vibrational bands. 

^Reference 10. 
2 ~ 1 

Cjhe term value is equal to = R/n* , where R (=109736 cm ) 

and n* are the Rydberg constant for HgS and the effective principal 

quantum number, respectively. 

^Shoulders or broad peaks. 

^hese term values are calculated by using the average values of the 

(vgjA) and (V2>a) states as the convergence limits. 

^Uncertain assignment, see Reference 10. 
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Table 2 .  (continued) 

Rydberg state State of HgS* Term values'" n* Assignment^ 

v^(cm"^)® (ctn~^) V2 K 

103477 109771 6294 4.176 7 n 

103950 110247 5297 4.174 8 E 

104341 110788 6447 4.126 8 n 

104822 111312 6490 4.112 9 z 

105263 111893 6630 4.068 9 n 

105764 112393 6629 4.069 10 z 

106213^ 112965 6752 4.031 10 n 

106769 113482 6713 4.043 11 E 

107664 114030 6366 4.152 11 n 

107643^ 114595 6952 3.973 12 E 

107991 115151 7160 3.915 12 n 

108460 115700 7240 3.893 13 E 

Average 6463 4.124 
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close correspondence with the onset (927 A) for the fragmentation of HgS 
+ ° + 

to form S + Hg. The onset (867 A) for the fragment channel HS + H is 

also indicated in the figure. The strong predissociation of HgS* to form 

and HS^ in the main cause for the broadening of autoionizing struc­

tures appearing in the region 780-920 A. The PIE curve in the region 

645-780 A is essentially structureless. 

Since the broad structures in this region are located at energies 

~ 2  
higher than the IE for the A A^ state, it is most likely that they 

2 originate from members of Rydberg series converging to the B Bg state 

at 14.643 eV. The positions of these autoionizing bands are listed in 

Table 3. A simple inspection shows that these structures can be grouped 

into two progressions which are designated as Progression I and II here. 

The average vibrational spacings for Progression I and II are 2427 and 

2405 cm"^, respectively. These values are found to be in between the 

vibrational frequency (2615 cm"^) [35] of H^S in the X^A^ state and that 

of the HgS* (^257 cm~^) [10] in the B^Bg state. Assuming that the 

positions at 913.1 and 844 A correspond to the 0-0 vibrational band 

origins, the effective principal quantum numbers for Progressions I and 

II are deduced to be 3.58 and 4.69, respectively. For the principal 

quantum numbers n to be equal to 4 and 5, the corresponding values for 

the quantum defects are 0.42 and 0.31. Again, based on the comparison 

of these values with 6-values in the Rydberg series of free atomic sul­

fur, the Rydberg orbital s are likely to be d-type orbital s. In a pre­

vious photoabsorption study of HgS, Masuko et al. [15] also identified 

the 2bj ^ nda^ Rydberg series having a value of ~0.339 for the quantum 
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Table 3. Progressions of vibrational bands HgS in the region 645-920 A 

Progression I 

N=4 0 109517 

1 111982 

2 114613 

3 116959 

4 119474 

5 121803 

6 124146 

7 126502 

Av(cni'^) 

2465 

2631 

2346 

2515 

2329 

2343 

2356 

n" 

Progression II 

3.58 n=5 0 

1 

2 

3 

113122 

115674 

118133 

120337 

Av 

2552 

2459 

2204 

n* 

4.69 

AV^„=2405 
a V 

AV^„=2427 

®See text for the assignments of n and v^. 

^The positions of the centers of autoionizing vibrational bands. 
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defect. Therefore, we prefer the assignments of 26^ -> 4da^ and ^ 5da^ 

for Progressions I and II, respectively^. 

Absolute photoionization cross sections for H^S^, S^, and HS^ formations 

The PIE curves for and HS^ obtained with a wavelength resolution 

of 1.4 A (FWHM) are shown in Figs. 6(a) and (b), respectively. These 

spectra are in good agreement with those obtained by Dibeler and Liston 

+ + 
[22]. The onsets for the S and HS formations from HgS were determined 

to be 13.375 ± 0.022 and 14.300 ± 0.024 eV, respectively, values which 

are also consistent with those reported previously. Weak autoionizing 

vibrational structures similar to those of Progressions I and II 

observed in the PIE curve for HgS* are also discernible in the PIE 

spectra for and HS*. In a photoelectron-photoion study, Eland [27] 

"'2 + 
concluded that dissociation from the B state of HgS produces mainly 

or exclusively HS*. The observation that the PIE curve for S* shows no 

~2  increase beyond the IE for the B Bg state is in conformity with the 

above conclusion. 

The absolute photoionization cross sections for the formation of 

HgS* (o^fHgS*)) in the region from the ionizing threshold of HgS to 

1060 A have been determined previously by Watanabe and Oursa [16]. By 

normalizing the PIE curve for HgS* obtained here to the absolute values 

Masuko et al. [15] also reported a Rydberg series which was assigned 
to the Zhj ndb2 transitions and has a quantum defect & % 0.4. Thus, 
the assignments of Progressions I and II to the 2b2 -> 4bd2 and 2b2 Sdbg 
transitions, respectively, cannot be excluded. 
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Figure 6. (a) PIE curve (1.4 A FWHM) for from H2S in the region 650-950 A; (b) PIE curve 
(1.4 Â FWHM) for HS"^ from HgS in the region 660-900 A 
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for OjfHgS*) near the threshold region, a^(H2S^) in the region 645-

1186 A can be estimated. Table 4 lists some of the estimated, values for 
+ ® + + 

o^fHgS ) at intervals of 50 A. The values for G^(S ) and o^(HS ) have 

also been deduced from the measured relative intensities of S^, 

and HS^. The latter values have been corrected for the sulfur isotopic 

effect. The differences in transmission of these ions through the mass 

spectrometer used in this experiment has not been corrected. However, 

+ + + 
since the masses of HgS , HS , and S differ only by one to two mass 

units, the transmission factors are expected to have minor effects on 

+ + + 
the measured relative intensities of HgS , HS , and S . Excluding the 

uncertainty of the measurement of Watanabe and Jursa [16], the values 

for a^jlngS^), a.j(S^), and o^(HS^^ are expected to be better than ±15%. 

Some discrepancies were found between the PIE curve for HgS* ob­

tained in this study and that reported by Dibeler and Liston [22]. In 

the present work, the height of the broad peak at ~925 A is about four 

times the height of the onset region, whereas in Ref. 22, the ratio is 

approximately seven. The VUV photon detector used here is a sodium 

salicylate fluorescence detector which is known to have a nearly con­

stant quantum yield in the range 'v.300-2000 A [36,37]. In the previous 

experiment, a tungsten photoelectric detector was used. Since the 

efficiency of a tungsten photoelectric detector varies substantially in 

the region 650-1190 A [38], it is most likely that the difference 

observed in the relative PIE for HgS* by the two studies arises from 

improper corrections in detection efficiencies at different wavelengths 

for the tungsten photoelectric detector of the previous study. 
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In summary, high resolution PIE curves for have been obtained 

in the region 645-1190 A. By using the results of previous photoelec-

tron and photoabsorption studies, autoionizing vibrational progressions 

resolved in the spectrum have been tentatively assigned. A more definite 

assignment of Rydberg structures in this region will require a higher 

resolution study in the future. 
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SECTION II. PHOTOIONIZATION STUDY OF (HgSjg AND (HgS)] 

Introduction 

The ion-molecule reactions between HgS* and HgS are relatively 

unexplored. Previous studies by high pressure mass spectrometry [1-2], 

selected ion flow tube [3], and ion cyclotron resonance [4-6] are in 

general agreement that the ion is the most important product ion. 

The cylotron ejection experiment of Huntress and Pinizzotto [6] showed 

that the formation of H^S"*" proceeds almost equally via both proton 

transfer and hydrogen-atom abstraction. Their experiment further re­

vealed that in addition to the H^S^ + HS channel, charge transfer is 

also a major primary reaction channel for HgS^ + HgS. 
+ + + + 

The Sg, HSg, HgSg, and ions, which were much lower in inten­

sity in comparison with H^S^, have been observed by Ruska and Franklin 

[1] in a low pressure ion source of H^S. At higher source pressures 

of HgS, ions such as HgSg and HgS^ resulting from condensation proc­

esses or termolecular mechanisms were also found. The results of a 

+ + 
trapped ion study by Harrison [5] provided evidence that the Sg, HSg, 

HgSg, and H^Sg ions were secondary in nature and were formed mainly by 

the reactions between and HS^ with HgS. The S"*" and HS^ ions were 

among the major constituents in the ion source and were produced by 

electron impact ionization of H^S. Nevertheless, the later experiment 

of Huntress and Pinizzotto has been able to identify HSg to be a primary 

product ion for the reaction of + HgS. These observations motivate 

(further) investigation of the association of Sg, HSg, HgS^, and H^Sg 

with the reactions between HgS and HgS. 
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This report presents the results and an analysis of a study of the 

unimolecular decompositions of (HgS)^ and (HgSg)^ which were prepared 

by photoionization of (HgSjg and (HgS)^ formed in a supersonic beam of 

HgS. 

(H2S)2 + hv » HgS^ • HgS + e + ZHg + e (1) 

,+ 
->• HSg + Hg + H + e (2) 

-> HgSg + Hg + e (3) 

^ HgS* + HS + e" (4) 

HgSg + H + e (5) 

(HgS)] + hv ^ HgS^ • (HgSjg + e" ^ HgSg + HS + e~ (6) 

By measuring the photoionization efficiency (PIE) spectra of Sg, HSg, 

HgSg, HgS^, HgSg, and (HgS)^ from (HgSjg and and (H^S)^ from 

(HgS)^, we have been able to examine the internal energy effects and 

the energetics of reactions (l)-(6). The study of these unimolecular 

reactions is expected to have direct bearing on the formation of Sg, 

HSg, HgSg, HgS*, and HgSg from the reactions of + HgS by the 

collisional complex mechanism. Similar photoionization studies on 

other systems [7-11] have been reported. The merits of the photoioniza­

tion of van der Waals clusters have also been discussed previously. 
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Experimental 

The experimental arrangement and procedures were essentially the 

same as those described previously [12,13]. Briefly, the apparatus con­

sists of a 3-meter near-normal incidence vacuum ultraviolet (VUV) 

monochromator (McPherson 2253M), a supersonic molecular beam production 

system, a capillary discharge lamp, a VUV light detector, and a 

quadrupole mass spectrometer for ion detection. The grating employed 

in this study was a Bausch and Lomb 1200 lines/mm MgFg coated aluminum 

grating blazed at 1360 A. Either the hydrogen many-lined pseudocon-

tinuum or the helium Hopfield continuum was used as the light source, 

depending on the wavelength region desired. 

The hydrogen sulfide was obtained from Matheson with a quoted 

purity of >99.6%. The HgS molecular beam was produced by supersonic 

expansion through a 120 um diameter (D) stainless steel nozzle. The 

nozzle stagnation pressure (P^) was varied in the range of ~150-500 

Torr. With the exception of the PIE spectrum of HgS* [14], which was 

obtained at a nozzle temperature (T^) of 290 K, all the other PIE spec­

tra were measured at T^ % 230 K. In a typical run, the fluctuation in 

the nozzle temperature was less than ±3 K as monitored with thermo­

couples. Since the hydrogen sulfide beam was sampled in a collision-

less environment, the observed fragment ions represent the primary 

fragments of (HgS)^, (HgS)^, and higher hydrogen sulfide cluster 

i ons. 

All the data were obtained with an optical resolution of 1.4 A 
o 

(FWHM). Data points were taken typically at either 0.5 or 1.0 A 
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intervals. The standard deviations of PIE data presented here are 

better than 10%. Each PIE spectrum was based on at least two scans, and 

prominent structures in the curves were found to be reproducible. Wave­

length calibrations were achieved by using known atomic resonance lines 

or Hg emission lines [15] when the Hg pseudocontinuum was used. 

Stemming from the fact that the ions of interest in this experi-
+ + + + + + 

ment, Sg, HSg, HgSg, H^S , H^Sg, and H^Sg, were, in general, much lower 

in intensity in comparison with the intensities of S^, HS^, H^S^, 

(HgS)^, and (HgS)^, it was necessary to operate the mass spectrometer 

at a resolution sufficiently high to minimize the contribution of 

intense ions to weaker fragments. The major isotopes of sulfur are 

S, S, and S which have the natural abundances of 95, 0.76, and 

4.22 percent [16], respectively. Maintaining a high mass resolution 

also makes possible a meaningful correction for the sulfur and hydrogen 

isotopic effects. The mass spectra of HgS in the mass range m/e = 31 to 

36 obtained at 950 and 800 A are shown in Figs. 1(a) and (b), respec­

tively, to illustrate the typical mass resolution used in this study. 

Results and Discussion 

Figure 2(b) shows the PIE curve for (HgS)^ in the region 640-1310 A 

obtained at % 465 Torr. The PIE spectrum for HgS^, measured with 

the same optical resolution, is shown in Fig. 2(a) for comparison. The 

+ + + 
analyses of the PIE spectra for HgS and its fragment ions S and HS 

have been reported previously [14]. The general profile of the PIE 

curve for (HgS)^ is similar to that for HgS* in the region ^#27-1185 A. 
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Figure 2. (a) PIE curve for HgS^ in the region 650-1185 A (nozzle conditions: P^ ^ 150 Torr, 

TQ % 298 K, D = 120 ytn); (b) PIE curve for (HgS)^ in the region 640-1310 A (nozzle 

conditions: P % 465 Torr, T % 230 K, D = 120 ym); (c) PIE curve for the mass 35 
OO + ^ 4- OA 4-^ O 

ions (Hg S + Hg S + H S ) in the region 600-1185 A (nozzle conditions: P^ % 

465 Torr, T^ % 230 K, D = 120 pm); (d) PIE curve for (HgS)^ in the region 650-1325 A 

(nozzle conditions: P % 465 Torr, T % 230 K, D = 120 ym); and (e) PIE curve for the 

mass 69 ions (H^^V • + 
oo 4. q/i ^ d c o  ̂  ̂  ̂ ^ 

H s ' Hg S) in the region 700-1300 A (nozzle conditions: P^ % 500 Torr, T^ ~ 

230 K, D = 120 ym). Ail PIE spectra were obtained with a wavelength resolution of 

1.4 A (FWHM) 
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In accordance with observations in other systems [9,17-20], autoionizing 

structures resolved in the HgS spectrum are hardly discernible in the 

(HgSjg spectrum. Since autoionizing Rydberg states in this region have 

mostly been assigned as vibrationally excited states [14], the lack of 

structures in the PIE curve for (HgS)^ is likely due to efficient 

vibrational predissociation of excited Rydberg states of the hydrogen 

sulfide dimers. 
o + 

At ~927 A, the PIE for HgS starts to decrease toward higher 

photon energies, whereas the PIE for (HgS)^ continues to increase 
° + 

gradually till '\,780 A. The decrease in PIE for H^S is a consequence 

+ + + 
of strong predissociations of H^S to form S and HS in this region 

^ S* + HG (7) 

^ HS^ + H (8) 

[14]. After including the PIEs for and HS*, the corrected PIE curve 

for HgS* in the region ~780-927 A (the upper curve in Fig. 2(a)) is 

found to roughly resemble the shape of the PIE curve for (HgS)^^ This 

observation can be taken as evidence that the probabilities for dis­

sociation processes of (HgS)^ such as 

HgS* • HgS -V S"^ • HgS + Hg (9) 

-> HS"^ . HgS + H (10) 

are much lower than those of the corresponding reactions (7) and (8). 

In view of the fact that the HgS • HgS complex has more degrees of 
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freedom in which to redistribute the excess energy of the HgS* moiety 

in the dimer ion, according to statistical theory, it is reasonable to 

expect that reactions (9) and (10) are less favorable in comparison 

with reactions (7) and (8) for the same amount of excess energy. The 

decreasing trend found in the PIE curve for (HgS)^ in the region 

^650-800 A correlates well with the corresponding increases in the forma­

tion of $2» HSg, ^2^5' and via reactions (l)-(5) which will 

be discussed later. 

The ionization energy (IE) for (HgS)^ determined in this study was 

9.596 ± 0.022 eV (1292 ± 3 A), which is 0.14 eV lower in energy than 

that reported recently by Walters and Biais [21]. The existence of 

weak hydrogen bonding between HgS molecules was concluded by Harada and 

Kitamura [22] from considerations based on the structure of solid 

hydrogen sulfide. From second virial coefficient data [23,24], the well 

depth for HgS-HgS interaction can be estimated to be 0.028 eV. In a 

spectroscopic study, Lowder et al. [25] obtained a dimerization energy 

of 0.074 ± 0.013 eV for (^^8)2. Depending on the geometry of the HgS 

dimer, theoretical calculations yielded values in the range 0.01-0.08 eV 

[26-29]. Here, the average experimental value 0.05 ± 0.03 eV is used 

as the bond dissociation energy (D^) for HgS • H2S. When the I Es of HgS 

(10.4607 ± 0.0026 eV) [14,30,31] and (H2S)2 and the value for Dq(H(H2S)2) 

are used, D^((H2S)2) can be calculated from the relation 

[^((HgSjg) = lEXHgS) + Dq((H2S)2) - IE((H2S)2) • (11) 

The calculated value for D^((H2S2)2) is 0.92 ± 0.04 eV (21.2 ± 0.9 kcal/ 
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mol). This value is comparable to the bond dissociation energies of 

many other simple inorganic and organic dimer ions [9,10,12,18,19,33,34], 

but substantially lower than the value of 1.58 ± 0.13 eV for [^((HgO)^) 

[32,35]. 

The PIE data for (HgS)^ in the region ~650-1325 A obtained at 

Pq % 460 Torr are plotted in Fig. 2(d). The PIE curves for (HgS)^ and 

(HgSjg are similar in appearance. The IE of (HgS)^ was determined to be 

9.467 ± 0.022 eV (1309.6 ± 3 A) which is also found to be lower than a 

value of 9.63 ± 0.01 eV obtained by Walters and Biais [21]. Assuming 

that the bond dissociation energy for (H2S)2 "HgS is the same as that 

for HgS • HgS and when the lEs of (1^28)2 and (HgiS)^ are used, a value of 

0.18 ± 0.04 eV for DQ((H2S2 • H2S) is deduced from a relation similar to 

Eq. (11). 

The PIE spectrum for the mass 35 ions in the region ^600-1200 A is 

shown in Fig. 2(c). The H2^V, H^V, DH^V, and D^V ions 

cannot be resolved by our quadrupole mass spectrometer. Considering 

the low natural abundance of the deuterium isotope (0.015%) [16], the 

intensities of the latter two ions should be much lower than those of 
00 X 00 4. 0/1 + O 

S , H2 S , and H S . In the region '^925-1200 A, the spectrum of 

the mass 35 ions exhibits the same structure observed in the PIE curve 

for HgS^, an observation indicating that the mass 35 ions in this re-

33 + 
gion are predominantly the H2 S ions formed by the direct photoioniza-

tion of HgS. The profiles of the PIE curves for the mass 35 ions and 
+ ° 

(^^5)2 are similar in the region '\^50-925 A. At wavelengths shorter 

than %867 A, which is the AE for the formation of HS^ from HgS [14], we 
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find that the ions are mainly responsible for the further increase 

3? + 
in PIE of the mass 35 ions. In principle, the true PIE curve for S 

33 + 34 + 
can be obtained by substracting the intensities of S and H S from 

that of the mass 35 ions. The true and the uncorrected PIE curves for 
+ ° 

HgS in the region ~650-1000 A are compared in Fiq. 3. The profile for 

the true PIE curve for is again found to bear some resemblance to 

that for (HgSïg- The true PIE for decreases dramatically from 

^-925 A toward longer wavelengths. In the region ~950-1180 A, the 
+ + 

intensity of H^S is less than 10% that of the Hg S ion. 

According to thermodynamic data listed in Table 1 [36-40], the AE 

for reaction (4) is predicted to be in the range ^40-07-10.29 eV (1231-

1205 A) which is slightly lower than the IE of HgS. Since one antici­

pates that the PIE spectra for and are identical and that 

33 + 
the Hg S ions cannot be formed below the IE of HgS, a careful examina­

tion of the PIE curves for the mass 35 and the mass 

34 ions below the ionization threshold for HgS should make 

possible the identification of the PIE curve for H^S*. Figures 4(a) 

and (b) show the PIE curves in the region ^4180-1240 A for the mass 35 

and 34 ions, respectively. The PIEs for the mass 34 and 35 ions were 

normalized at 1180 A. As expected, this comparison clearly brings out 

the difference between the PIE spectra for the mass 34 and 35 ions in 

the energy range lower than the IE of HgS. The finite yields observed 

for the mass 35 ions in the region ^4190-1210 A are definitely due to 

reaction (4). The AE for the formation of is quite distinct and 

has a value of 10.249 ± 0.012 eV (1209.7 ± 1.5 A). From the latter 
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Figure 3. The relative PIEs for (HgS)^, HgSg, (HgS)!, HgSg, 

HSg, Sg, and in the region ~65-1000 Â obtained with 

PQ % 360 Torr and % 230 K. The PIE spectra connected 

by solid lines have not been corrected for isotopic effects. 

The PIE spectrum for connected by dash lines has been 

corrected for isotopic contributions. No corrections were 

made to account for transmission factors of these ions 

through the mass spectrometer used in this experiment 
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Table 1. Heats of formation at 0 K in kcal/mol of neutrals and ions® 

Compound Neutrals Ions 

(HLS), -14.9 ± 1.0 [36] 203.5 ± 1.1^ 

178.9 ± l.gb 

(HgSjg -9.4 ± 0.7 [36] 211.9 ± 0.9^ 

HgS^ 

<238^ HgS; 

HgS^ 239-246^ [37] 

HSJ 232-249^ [6] 

<290 

b <248 

'\,246^ 
b 

H3S+ 193.8 ± 1.4 

188.3-193.3C [36,39,40] 

HgS -4.2 ± 0.2 [40] 237.02 ± 0.21 [14,38] 

-4.9 ± 0.2 [40] 

HS 33.14 ± 1.2 [40] ~274 [38] 

33.3 ± 1.2^ [40] 

S 65.66 ± 0.06 [40] 305 [38] 

66.20 ± 0.06^ [40] 

H 51.631 ± 0.001 [36] 365.236 ± 0.01 [36] 

52.100 ± 0.001^ [36] 367.186 + 0.01 [36] 

®The numbers in []s are the references. 

^This work. Because of the high degree of rotational and low fre­

quency vibrational relaxation in the supersonic expansion, these values 

can be considered to be the heats of formation at 0 K. 

''Heats of formation at 298 K. 
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Figure 4. PIE curves for (a) the mass 35 ions (Hg S + S and (b) the mass 34 ions (Hg S ) 

in the region ~1178-1240 A obtained with a wavelength resolution of 1.4 A (FWHM). The 
o 

PIEs for the mass 34 and 35 ions have been normalized at 1180 A. (Nozzle conditions; 

Pq % Torr, % 230 K) 
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value, together with the known heats of formation for (HgSjg [36] and 

HS [40] at 0 K (Table 1), the heat of formation for at 0 K is cal­

culated to be 193.8 ± 1.4 kcal/mole. The proton affinity is equal to the 

enthalpy change for the reaction 

HgS + ^ HgS* . (12) 

When the value for and the values for and 

aH°o(H^) [36] (Table 1) are used, the absolute proton affinity for HgS 

at 0 K is deduced to be 167.2 ±1.4 kcal/mole. We note that the uncer­

tainty of the proton affinity determined here is largely due to the un­

certainties in AH°q(HS) and to a smaller extent due to the bond dis­

sociation energy of HgS «HgS. Conventionally, the proton affinity is 

referred to 298 K. Assuming an ideal gas model and excluding any vibra­

tional and electronic contributions to the heat capacities of HgS and 

HgS^, a value of 168.7 ±1.4 kcal/mole can be obtained for the absolute 

proton affinity of HgS at 298 K. The latter value is found to be in 

agreement with the literature values [41-47]. 

The PIE curve for the mass 69 ions in the region ^VOO-1300 A is 

shown in Fig. 2(e). The mass 69 ions observed here mainly consist of 

the and V • 

ions. Similarity in appearance can be found between the PIE curves for 

the mass 35 and the mass 69 ions in the region ~700-925 A. The con­

tributions attributable to the and ions to 

the intensity of the mass 69 ions observed here in the region ~700-870 A 

34 + 
are much lower than the corresponding contribution of the H S ion to 
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the observed intensity of the mass 35 ions. This is consistent with the 

conclusion that the intensity of the HS^ • HgS ions formed by fragmenta­

tions of hydrogen sulfide dimers and clusters is much lower than that 
+ ° 

of HS from HgS. At photon wavelengths longer than 'V'890 A, the contribu-
OA X '30 ?? + 

tions of the H S -Hg S and H S • S ions become negligible in 

comparison with those of and The 

ratio of the intensity of to that of 

is approximately 0.9 at 1190 A. At 1250 A, this ratio decreases to ~0.2. 

32 + 33 
After a careful correction for the contributions from the S -Hg S 

and ions, the AE for the formation of • HgS by reac­

tion (6) is determined to be 1260 ± 5 A (9.84 ± 0.04 eV). By using the 

latter value and the known heats of formation for (HgS)^ and HS at 0 K 

(Table 1), is calculated to be 178.9 ± 1.9 kcal/mole. The 

latter value and AH°Q(HgS*) determined here allow a value of 10.7 ± 2.2 

kcal/mole to be calculated for the enthalpy change of the association 

reaction at 0 K. 

HgS* + HgS -> HgS^'. HgS (13) 

In a study by pulsed, high-pressure mass spectrometry, Meot-Ner and 

Field [48] obtained a value of 12.8 ± 1.5 kcal/mole for the enthalpy 

change of reaction (13) at approximately 370 K. Assuming an ideal-gas 

model and excluding any vibrational and electronic contributions to the 

+ + 
heat capacities of H^S , HgS, and H^S • HgS, it can be shown that the 

latter value corresponds to a value of 10.6 ± 1.5 kcal/mole for aHq 

which is in excellent agreement with the value derived from this study. 
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The relative PIEs for (HgS)], HgSg, (HgSjg, H^Sg, HgSg, HSg, Sg, 

and HgS* in the region 650-1000 A obtained with % 360 Torr and 

TQ % 230 K are plotted in Fig. 3 at intervals of 50 A. Although the 

PIEs of these ions have not been corrected for isotopic contributions, 

these measurements show that Sg, HSg, HgSg, and are minor fragment 

ions from the hydrogen sulfide dimer and cluster ions. In the nozzle 

expansion conditions used here, the hydrogen sulfide dimers and trimers 

are the dominate cluster species in the beam. At T^ % 230 K, the rela­

tive intensities of these ions measured at a given wavelength were found 

to be strongly dependent upon P^ which in effect determines the dis­

tribution in concentration of the hydrogen sulfide clusters in the beam. 

This observation is consistent with the interpretation that not only can 

the Sg, HgSg, HSg, H^Sg, and ions be formed by reactions (l)-(5), 

but that they also can be produced by fragmentations of higher cluster 

ions such as 

(HgS)^ + hv ->• ® Sg + HgS + ZHg + e (14) 

-V HSg + HgS + Hg + H + e" (15) 

^ HgSg + HgS + + e" (15) 

^ HgSg + HgS + H + e" (17) 

^ HgS* + HgS + HS + e" (18) 

Nevertheless, the PIE curves for S^, HSg, H^S^, and were found to 

be quite insensitive to changes in P at T % 230 K in the range of 
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% 200-460 Torr. Stemming from the expectation that the AEs of the 

above reactions are higher than those for the corresponding reactions 

(l)-(5), the existence of (HgSjg and higher hydrogen sulfide clusters 

in the beam should not affect the AE measurements for fragment ions from 

(HgSjg. The finding that the AE for is in accordance with the 

expected thermochemical value for reaction (4) can be taken as evidence 

in support of the above expectation. 

The PIE curves for S^, HSg, HgSg, and (uncorrected for isotopic 

contributions) in the region ^650-1000 A obtained with P^ % 350 Torr 

and TQ % 230 K are shown in Figs. 5(a), (b), (c), and (d), respectively. 

Other than the spectrum for Sg, the PIE curves for HSg, HgSg, and 

all suffered from the sulfur isotopic effects. However, because the 

intensities for the Sg, HSg, HgSg, and H^Sg ions are similar and the 

33 34 
natural abundances for S and S are small, the corrections due to 

isotopic contributions should only introduce minor modifications of 

the spectra. 

The PIE curve shown in Fig. 5(a) represents the true PIE spectrum 

for Sg. Within the sensitivity of the apparatus, an upperbound for the 
I o 

AE for $2 was determined to be 12.98 eV (955 A). Based on the known 

values for aH°q(S2) [38] and aH°q((H2S)2) (Table 1), the thermochemical 

threshold for the formation of Sg by reaction (1) is predicted to be 

11.07 eV (1120 A). The difference of 1.91 eV (44 kcal/mole) between 

the latter value and the experimental threshold can be taken to be an 

upper limit for the activation energy for the formation of + ZHg from 

the reaction of HgS* + H^S. 
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Figure 5. PIE curves for (a) Sg, (b) HSg, (c) HgSg, and (d) H^Sg in 

the region ^650-1000 A obtained with a wavelength resolution 

of 1.4 A (FWHM). (Nozzle conditions: % 360 Torr, % 

230 K) 
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In the case of the PIE spectrum for HSg (Fig. 5(b)), the isotopic 
Op OO ^ o 

contribution from the S S ion near the threshold region (>900 A) is 

32 31 + 
more serious. After accounting for the contribution of S S , an 

upperbound for the AE for the formation of HSg by reaction (2) was esti­

mated to be 13.40 eV (925 A). The heat of formation for HS^ is not 

known. By using the measured AE of HSg and thermochemical data for 

(HgS^g and H [36], the heat of formation for HSg is estimated to be 248 

kcal/mole. The previous observations of the reactions + HgS HSg + 

H and HS^ + HgO -+ HgO* + Sg have placed AH^^fHSg) in the range of 

232-249 kcal/mole [6]. Thus, the value for AH^^fHSg) deduced here is 

consistent with these limits. 

32 + 
The intensity cf the mass 66 ions, which is mostly due to Hg S^, 

is comparable to that of Sg. After correcting for minor contributions 

to the observed PIEs from and an upperbound for the 

AE for reaction (3) is estimated to be 13.00 eV (954 A). According to 

previous electron impact studies [37], ^^^^(HgSg) is in the range 239-

246 kcal/mole. These limits imply the AE for HgSg should be in the 

range ^10.77-11.08 eV (1119-1151 A). The comparison between the latter 

value and the experimental AE for HgSg places an upper limit of ->48 

kcal/mole for the activation energy for the formation of HgSg + Hg from 

the reaction HgS^ + HgS. 

Since the intensity for HgSg is greater than that of HgSg and HSg 

in the region ^700-1000 A (see Fig. 3), the contributions from 

and to the PIE spectrum for (Fig. 5(d)) are 

minor. The AE for the formation of from reaction (5) was found to 
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be 12.97 eV (956 A). The heat of formation of has not been re­

ported previously. The measured AE for H^Sg makes possible the calcula­

tion of a value of 238 kcal/mole for In view of the large 

activation energies observed for the formation of and HgSg from 

reaction (1) and (3), respectively, the values for and 

aH^qCHsS^) derived from AE measurements here are likely to be upper 

1imi ts. 

The reactions of HS^ and with H^S 

HS"^ + HgS -X HgS* + S (19) 

HSg + Hg (20) 

'2r2 

s"^ + HgS ^ Sg + Hg (22) 

HSg + H (23) 

have been observed previously [3,5,6]. The AEs for the formations of 
+ + 

S and HS from HgS by photoionization have been reported to have the 

values of 13.37 eV (927 ± 1.5 A) and 14.30 eV (867 ± 1.5 A), respec­

tively. The PIE spectra for Sg, HSg, HgSg, H^Sg, and only show 

+ + 
minor resemblance to the PIE spectra for S and HS . Based on the 

observations that the AEs for Sg, HSg, are close to the 

H,S+ + H (21) 

AEs of and HS^ and that the intensities of and HS^ produced in 

^2^)2' this region are much higher than that of (H„S)^, it is reasonable to 

suspect that the Sg, HSg, and HgSg ions might originate from reactions 
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(20)-(23). In order to examine the possible influence of these second­

ary reactions, the PIE curves for Sg, HSg, and HgSg were measured again 

in an experimental arrangement without differential pumping. This was 

achieved by removing the skimmer and placing the nozzle in the photo-

ionization chamber. The distance between the nozzle and the photoioniza-

tion center was shortened to approximately 2 cm instead of vj.S cm when 

differential pumping is maintained. In this experimental arrangement, 

the background HgS pressure in the photoionization chamber is slightly 

less than 10"^ Torr at % 250 Torr. The signals for Sg, HSg, and 

HgSg were found to be more than 20 times higher than the observed 

signals with the differential pumping arrangement. The relative inten­

sities for Sg, HSg, and HgSg measured at ^810 A were 1:0.35:0.16, 

respectively. 

Figures 6(a), (b), and (c) show the PIE spectra for S^, HSg, and 

HgSg in the region 600-975 A obtained at P^ % 250 Torr and T^ % 230 K 

without the differential pumping arrangement. The PIE spectrum for 

shown in Fig. 6(a) is found to be nearly identical to that for [14], 

indicating that the secondary reaction (22) is mainly responsible for 

the formation of Sg. The PIE curve for HSg shown in Fig. 6(b) is also 

similar to the spectrum [14]. The hump starting at approximately 

875 A, which is close to the AE for from HgS, is likely to arise 

from the reaction HS^ + HgS. Thus, we conclude that HS^ can be formed 

by reactions (20) and (23), a conclusion consistent with previous 
+ + ° 

studies [3,5,6]. The ratio of the intensities for Sg and HSg at 875 A, 

which is below the AE for HS"*" from HgS, is measured to be 3.3. This 
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Figure 6. PIE curves for (a) S^, (b) HSg, and (c) HgSg in the region ^600-990 A obtained without 

the differential pumping arrangement. (Experimental conditions: % 250 Torr, % 

230 K, wavelength resolution = 1.4 A (FWHM)) 
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value is also found to be in excellent agreement with previous reported 

values of 3.2 [3] and 3.8 [6]. The observed intensity for HgSg at 875 A, 

before corrections for the isotopic contributions, is only that of 

Sg. Therefore, the finite PIEs observed in Fig. 5(c) at wavelengths 

longer than ~875 A are almost totally due to H S S and S S . The 
+ ° 

further increase in PIE of at wavelengths shorter than 870 A can 

be attributed to reaction (21). In short, the above comparison shows 

that the formation of Sg, HSg, and by secondary reactions (20)-

(23) have much greater cross sections than the corresponding reactions 

by + HgS. Moreover, the substantial differences observed between 

the spectra of Sg, HSg, and HgSg shown in Figs. 5(a)-(d) and those in 

Figs. 6(a)-(c) support the conclusion that reactions (20)-(23) contrib­

ute little to the spectra observed in Figs. 5(a)-(d). The above inves­

tigation also demonstrates the importance of using the differential 

pumping arrangement for the study of unimolecular decompositions of 

dimer and cluster ions such as reactions (l)-(6). 

The adiabatic lEs for the À^A^ and states of obtained by 

photoelectron spectroscopy [30] are 12.777 eV (970 A) and 14.643 eV 

(847 A), respectively. The AEs for the Sg, HgSg and ions are 

~ 2  
found to be close to the IE of the A A^ state. As the photon energy 

~2 
increases to approximately the IE of the B Bg state, the PIE curves for 

the Sg, HSg, HgSg, and all exhibit further increases in PIE. 

Qualitatively, one may conclude that reactions (l)-(5) proceed with 

higher probabilities when the moiety in « HgS is prepared in 

the À^A^ and B^Bg states than when is formed in the X^B^ state. 
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+ + 
Furthermore, since the productions of S and HS are believed to arise 

from fast predissociation of HgS^, it is likely that many of the frag­

mentation reactions might be stepwise processes such as 

. HgS ^ . HgS + Hg ^ Sg + ZHg (24) 

^ S"^ . HgS + Hg HSg + Hg + H (25) 

^ HS"^ . HgS + H ^ HSg + Hg + H (26) 

^ HS"^ . HgS + H ^ HgSg + 2H . (27) 

In order to measure the relative reaction probabilities of reac­

tions (l)-(5) as a function of ionizing photon energy without the inter­

ference of processes such as reactions (14)-(18), it is necessary to 

operate the HgS nozzle beam under conditions which minimize the forma­

tion of hydrogen sulfide trimers and higher clusters. The intensities 

for (HgS)^, HgSg, HgS^, HgSg, HSg, and Sg were measured at % 200 Torr 

and Tq ~ 230 K at wavelength intervals of 50 A in the region 650-950 A. 

Under these beam conditions, the intensities of HgSg, (HgS)^, and 

higher hydrogen sulfide cluster ions were all found to be within the 

noise level, indicating that the concentrations of (HgS)^, n > 3 were 

negligible. After careful corrections for isotopic contributions, the 

true intensities for (H^S)^, H^Sg, HgS^, HgSg, HSg, and were ob­

tained. The differences in transmission of these ions through the mass 

spectrometer used in this experiment have not been corrected for. 

Since the masses of these ions with the exception of differ only 

by a few mass units, the transmission factors are expected to have minor 
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effects on the measured relative intensities of HgSg, HS^, 

and Sg. The relative abundances, I((HgS)^/^, KH^S^)/!, I(HgS^)/Z, 

KHgSg)/^, KHSg)/!, and KS^)/: for HgSj, H^Sg, HsJ, and 

Sg, respectively, in percentage as a function of photon energy in the 

r e g i o n  6 5 0 - 9 5 0  A  a r e  p l o t t e d  i n  F i g .  7 .  H e r e  I ( ,  

I(HgS^), ^HgSg), I(HSg), US^) represent the true intensities of 

(HgS)^, HgSg, H^S^, HgS]^, HSg, and Sg, respectively, and z is the sum 

of I((H2S)J), KHgSg), KHgS"^), KHgSg), KHS^), and 1{S^). As shown 

in Fig. 7, HgS^ + HS is found to be the dominant product channel with 

only minor variation in fragmentation probability in this region. This 
•fa H* 

analysis also confirms the above conclusions that the HSg + 

Hg + H, HgSg + Hg, and + H are weak product channels which have 

+ + 
higher reaction probabilities when HgS in H^S • H^S is formed in the 

À^A^ or states. 

In summary, the study of the unimolecular decomposition of (HgS)^ 

using the molecular beam photoionization method has allowed the 

unambiguous identification of the S^, HSg, HgSg, H^S^, and H^Sg ions as 

the primary product ions from the reactions of HgS^ + HgS. From the AE 

and IE measurements of various ions, the energetics of HSg, H^Sg, HgSg, 

HgS^, (HgS)^, and (HgS)^ have been calculated. This study also reveals 

that the ion-molecule reactions between and HgS to form S^, HS^, 

HgSg, and is strongly favored for in the Â^A^ and B^Bg states 

~ 2  in comparison to the X state. Furthermore, the decompositions of 

the 'HgS complexes to form S^, HS^, and are likely to proceed 

by stepwise processes as shown in reactions (24)-(27). 
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Figure 7. The variations of the relative abundances for (HgS)^ {•), (o), (v), (X), 

HSg (•), and (+) as a function of the photon energy, z is the sum of ^(HgS)^), 

KHgSg), I(H^S+), KHgSg), KHsJ), and I(Sg), where ^(HgS)^), I(HgSg), KH^S"^), 

KHgSg), KHSg), and 1{S^) represent the intensities for (HgS)^, H^Sg, H^S^, HgSg, 

HSg, and S^, respectively, after the corrections for isotopic contributions. = 

^((HgS)^, ^(HgSg), I(HgS^), ^HgSg), KHSg), or US^). (Experimental conditions; 

PQ % 200 Torr, % 230 K, wavelength resolution 1.4 A (FWHM)) 
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PART II. THE ROTATING SOURCE CROSSED MOLECULAR BEAM APPARATUS 

The object renders in material form the préexistent 

intention that gave birth to it, and its form is 

accounted for by the performance expected of it 

even before it takes shape. 

Jacques Monod 

Introduction 

The experimental situation and corresponding design reflect the 

particular information sought in the col 1isional event. The theoretical 

interpretation of the physical observations refines our scientific 

insight and directs our interest. Thus, theory is the "guiding hand" 

of experiment and experiment is the "cutting edge" of theory. This 

principle of fruitful interaction between experiment and theory is 

readily apparent in the success of molecular beam scattering in pro­

viding detailed insight into elastic, inelastic, and reactive processes. 

Consider the asymptotic states of the general collision 

A(V^,a) + B(Vg,e) -> C(V(,,Y) + D(VQ,6) . (1) 

—y —^ 
The collision transforms reactants A and B in and Vg translational 

states and internal states a and 3 into products^ C and D in y and 0 

It may be that no change occurs in the identity (i.e., A = C and 
B = D) or internal state (a = y, 3 = 6) of the participants and the 
collision (classically) altered only the velocities so the event is 
referred to as elastic. If again there is no change in identities but 
a and 3 change (to y and 6 here), the event was inelastic. Changes in 
identity and internal state qualify the collision as reactive. 
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internal states with velocities and V^. In the laboratory perspective, 

the number of C species appearing in state y per unit time with velocity 

Vq is 

I ÛR pM _v ->• 
n/\(«)nB(2) iV^ -  Vg (a,S |V^ -  Vg|) 

dUp ^ 
X [ -^ ] dVp} (2) 

dVc 

where nj(p) represents the number density of species J of internal state 

p in the interaction volume and [du^/dV^] is the Jacobian for 

transformation from the laboratory (LAB) to the center of mass (CM) frame 

[1,2,3] in which the C product has velocity u^. The connection to theory 

is made through the center of mass differential cross section, 

CM 
Y,6,u^; |V^ - Vgl), which is independent of the experimental 

CM 
specifics. ^c(y)( ) contains all the dynamical information (con­

necting the initial to the final state) of the collision and to (re-) 

produce the CM differential cross section from first principles is the 

theorists' aspiration. Likewise, an apparatus which can, in the gen­

eral case, produce and examine the experimental situation represented 

by Eq. (1) is the experimentalists' "Golden Fleece". However, as past 

experience has shown, increasing the degree of inquiry into the colli­

sion event dictates an overall increase in complexity and/or specializa­

tion of the experimental design. Easily obtained is angular information 

which requires only definition of trajectories prior to and post 

collision. The first "primitive" [4] reactive beam-beam experiment of 

Taylor and Datz [5] on K + HBr KBr + H involved just that and revealed 
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"the preference for forward scattering" in the center of mass. "Not so 

primitive" [4] experiments involved the additional ability, and com­

plexity, of velocity selection beginning with selection of one reactant 

(e.g., K(V|^) + CHgl^CgHgl KI + CHg,C2Hg [6]), but eventually including 

both a reactant and a product (e.g., K(V|^) + CH^I KI(V|^j) + CH^ [7], 

K(V|^) + HBr,DBR KBr(\/|^g^) + H,D [8]). Among the corresponding experi­

mental "rewards" were refined observation of the angular and energy 

dependence of the cross section and partitioning of the available energy. 

This led to the theoretical "payoffs" in development of explanations 

such as the 'rebound', 'stripping', etc. mechanisms for the alkali 

reactions [9,10] as well as stimulating advances in scattering theory 

and calculation [11]. Leaving the specialization of the "alkali age" 

required more diverse (e.g., noncondensable) reactant systems and, 

consequently, a more "universal" detector. Strenuous differential 

pumping and the electron bombardment ionizer [12,13] provided the 

passport. 

A variety of apparati, the "supermachines", have appeared incorpo­

rating to some degree these two features, however, a particularly suc­

cessful arrangement has been the in-plane rotating detector apparatus 

of Y. T. Lee, J. D. McDonald, P. R. LeBreton, and D. R. Herschbach [14]. 

Mimicry alone serves as testament [15,16,17]. Since this apparatus 

elegantly manifests the general considerations of beam-beam experiments, 

it shall be described in detail to illustrate the design criteria. 
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SECTION I. GENERAL CONSIDERATIONS AND DESIGN CRITERIA 

Signal Considerations 

The in-plane scattering situation (for unselacted beams) is shown 

in Fig. 1. Source apertures define the beams and collision volume from 

which the scattered particles are observed by a detector similarly 

defined. Ideally, the detector signal would be solely due to the scat­

tering between the species of the tv;o beams in the interaction zone. 

However, in reality, there are background considerations due to the 

nonzero pressures experienced by the beams and the detector. 

In the collision region, typical thermal beam densities (n^) cor­

respond to about 10"^ Torr. If the total cross section for some event 
op -3 3 

(ajQj) is 1 A and the collision volume is 'v-lO cm , the total num-

TOT 
ber of scattered particles per second Ng is (refer to Eq. (2)) 

TOT 
" "A"B °TOT ^ "^Z 

cm cm 

= 10^ product species per second 

which corresponds to a pressure of ^10"^ Torr in the collision zone. A 

2 detector of effective area equal to 0.25 cm a distance 25.0 cm 

-12 
from the collision region would see the product pressure as 'vlO Torr 

(or -vlO product molecules arrive per second). 'Loss' of product 

molecules and angular information by secondary collisions is minimized 

by low ambient pressures ('v-lO"^ Torr in the collision chamber), yet 
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Figure 1. Schematic of the in-plane crossed beam experiment 
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interference from background remains unavoidable and must be assessed. 

Modulation (e.g., [1]) of one or both (e.g., [2]) of the beams is one 

scheme to take background into account. 

Modulating a beam chops the detector count rate into that of an 

'open' channel in which both the signal and background contribute, and 

a 'closed' channel ascribed to background. The number of counts during 

a counting time t in the closed channel is 

= bt 

where b is the background count rate, and in the open channel 

N° = (s + b)t 

where s is the signal count rate. The ratio of the signal to noise (r) 

indicates experimental feasibility. Because the signal and background 

are small, their random fluctuations are the limiting source of noise 

(i.e., thus, the 'error' in N is . For a counting time t, the 

signal to noise ratio r is 

r = N° - N" 
(N° + 

= — Ï72 (4) 
[(s + 2b)t]^/'^ 

or 
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Because s and b are proportional to their actual densities, n^ and n^, 

respectively, at the detector, e.g., 

s = Ç n^ 

by the efficiency of the detector ç, Eq. (5) may be written 

Evaluating the fractional change in R, a R / R ,  due to a given fractional 

change for each of the experimentally controlled parameters gives [3] 

AR/R _ . + ^"B _ R 
AN^/N^ N^ + 2NG ^ R ^S 

è m  =  I  =  f  â K ]  
AÇ/Ç - ^ R -'Ç 

AR/R _ ^"B ^ 

^V"b " "s + 2"b " ^ 

On the basis of the improvement in the signal-to-noise for a fixed 

counting time, these can be ordered 

( f )s > ( f ) c  '  ( f 'b • ( 7 )  

The implication is that in attempting to improve, or in facing design 

compromises for an experiment, one gains most by improving the scat­

tered signal, next by increasing detector efficiency, and to a lesser 

extent by lowering the background. This is a statement of the pertinent 

design criteria. And, therefore, intense beams, sensitive detection, 
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and low backgrounds via strong pumping becomes the crossed beam experi­

mental design strategy. 

Source Considerations 

Intense sources represent the compromise between high throughputs 

and available pumping speed. From the viewpoint of loss due to beam-

background scattering, the pumping requirements for sources becomes 

apparent. 

In a region where the mean free path is £, the probability a particle 

will successfully travel a distance i unaffected is 

= exp{-&/I} . (8) 

At room temperature, the product of the mean free path 1 (in cm) and 

the pressure P (in Torr) in a region is on the order of 

I • P - 5 • 10"^ cm Torr 

(for species about the size and weight of Ar or O^). Thus, the probabil­

ity of being transmitted becomes 

P(&,P) = exp{ } . (9) 
5 • 10 cm Torr 

If a beam is to traverse, for instance, 5 cm from the source orifice to 

the first collimating slit with less than 10% attentuation, a background 

pressure of about 10"^ Torr is required in that region. An effusive 

source is restricted, by definition (e.g., [4,5]), such that the mean 

free path behind the nozzle orifice is about an order of magnitude 

greater than the characteristic orifice dimension, Dj^: 
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I{Pg} = I{Pgg} ^ 10 

where 2{Pg} is the mean free path at a (source) pressure Pg which, for 

an effusive beam, is P^g. Therefore, effusive source throughputs Q^g 

are less than or equal to 10" Torr liter per second (hereafter Torr 

1 s"^) and moderate effective pumping speeds achieve the necessary 

pressure and, thereby, high transmissions: 

^EB ^ " ^eff 

(10 ^ Torr 1 s~^) v (10"'^ Torr) = 10^ 1 s ^ 

However, the low throughput generates a correspondingly low intensity 

(number density or pressure) for the beam species at the collision 

region (~10^^ species cm~^ s~^, ~10^^ species cm"^, ^10"^ Torr). On the 

other hand, nozzle sources are not similarly constrained and operate at 

high source pressures (i.e., the nozzle source pressure P|^ is such that 

P^ = 1000 Pgg and so I{P|^} « Dj^), hence, with large throughputs 

Q|^ ^ 1 Torr 1 s"^ 

Thus, nozzle beams offer one or two orders of magnitude higher inten­

sities, but also the concomitant problem of removing large quantities of 

gas. If 'all' the gas were to be removed to a pressure of 10"^ Torr in 

one 'stage' of pumping, after the source orifice and before the first 

defining slit, an unrealistic effective pumping speed would be required; 

> 10^ 1 s~^. Mechanical considerations, available pumping speed, 

and expense (see Appendix A) make this an unprofitable prospect. 
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Reasonable effective pumping speeds are of the magnitude 10 Is", so 

apparently the dilemma faced is either to lower the throughput and 

sacrifice intensity or suffer the higher background and accompanying 

attenuation - a losing proposition either way. 

Recasting the Eq. (9) in terms of the effective pumping speed, 

and throughput reveals an alternative 

^ • [Qm ~ ^eff^ 
P(2,Q.,S = exp{ — } 

2 ' P 

e x p l -  '  •  T e r r  1  s ' ' )  .  ( 1 0 ^  1  s ' l ) ,  ,  .  

5 • 10 cm Torr 

By decreasing the length of travel in the region of higher pressure, 

here from 5 cm in P = 10"^ Torr to 0.5 cm in P = 10"^ Torr, high 

transmission (>90%) is maintained. Moving the nozzle closer to the 

first aperture has two effects. First, the density of flowing gas at 

the first defining aperture increases necessitating special mechanical 

design of this aperture; i.e., development of the skimmer [6,7]. 

Second, the (remaining) throughput problem reappears, although greatly 

diminished in magnitude, between the first aperture (now the skimmer) 

and the second aperture. Therefore, in a nozzle source, the apertures 

have the additional function of dividing the gas load into different 

regions and, thereby, tractable amounts. The success of nozzle sources 

and their superiority over effusive sources is dependent on strong 

differential pumping. 
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Detector Design Considerations 

From Eq. (5), it can be seen that counting time t, for a particular 

signal-to-noise ratio r, goes as 

t r^/s^ b » s 

for the background b being larger than the signal s, while if they are 

comparable 

t = r /s b ^ s 

If the detector were exposed directly to the (main) collision chamber, 

b >> s and unreasonably long counting times would be required. As 

illustrated for the sources, differential pumping can lower the ambient 

pressure at the detector. 

For example, if the outer detector aperture exposed to the (main) 

collision chamber pressure of 10" Torr is of area 0.25 cm , the through­

put is approximately 3 • 10"^ Torr 1 s~^. If behind that aperture and 

before the next, an effective pumping speed^ of 50 1 s~^ is available, 

this (first) region will have a pressure of 6 • 10"^ Torr which is lower 

than the main chamber pressure by an order of magnitude. If two more 

stages of differential pumping are provided, the ambient pressure at the 

detector is reduced to o/lO Torr and now s b. Note, this is the 

total pressure based on total effective pumping speeds. In actuality. 

The necessary cleanliness of the detector and for ultra-high vacuum 
in the detector chamber requires specialized pumping techniques for 
which high pumping speeds are hard to come by. Refer to Appendix A. 
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pumping speeds are species dependent^. So, in fact, the situation may be 

more or, possibly less, favorable depending on the actual species pumping 

speed. 

This is of special importance in view of the fact that previous 

considerations of signal and background are species specific. It is the 

ambient partial pressure of the species being detected that produces 

the background. The relative ease of the 'alkali age' becomes readily 

apparent. High pumping speeds, via liquid nitrogen cryopumping, were 

readily available to suppress interfering background and the highly 

specific and efficient (ç > 90%) surface ionization detector [8] obviated 

apparati complexities introduced by multiple stages of differential 

pumping. Advancing to 'universality' required the advent of high, 

nonspecific pumping speeds and complex apparati to efficiently exploit 

them as well as universal detection. The electron bombardment ionizer 

enables universal detection, although with low efficiency (ç 'v- 0.1%), 

and in conjunction with mass discrimination high selectivity for the 

species of interest. It can now be seen how universality effects design. 

The Rotating Detector Apparatus 

As stated in the Introduction to this Part, the apparatus of Lee, 

McDonald, LeBreton and Herschbach [9] represents a particularly successful 

implementation of the critical criteria described above. Vertical and 

For example, cryogenic pumping with liquid nitrogen 'removes' a 
negligible amount of helium while for condensables (e.g., the alkali 
halides of the alkali age), the pumping speed is proportional to the 
area at 77°K (which can be made as large as required. 
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horizontal cross sectional views are shown in Figs. 2a and 2b [9], respec­

tively, and to aid visualization, a perspective drawing is provided in 

Fig. 3 [10]. This rotating detector apparatus (RDA), as well as note­

worthy modifications in its descendants, will be described briefly. 

Apparatus description 

The beams generated by the sources cross at the fixed angle of 90 

degrees in a (main) collision chamber pumped by a single gate-valved 

"10 inch" oil diffusion pump (S 4200 1 s"^). Each source can be 

doubly differentially pumped. The first stage by a "6 inch" oil diffu­

sion pump (S ^ 2500 1 s"^) {which in later designs was replaced by a 

"10 inch" oil diffusion pump (S 'v 5300 1 s"")}. The second stage by a 

"4 inch" oil diffusion pump (S ~ 1200 1 s~^). Changing apertures in 

the source chambers alters the beam widths and collision volume. 

Besides supporting the source chambers in rigid, 3.7 cm thick 

walls, the stainless steel main chamber has a 6.4 cm thick "lid" 

machined for a 63.5 cm inside diameter (i.d.) bearing and two differ­

entially pumped seals. The bearing supports the rotating plate of the 

detector chamber which is sealed [11] by two graphite embedded Teflon 

'Ted Rings' seals. Three contiguous differentially pumped regions, 

each by a 50 1 s~^ ion pump {increased to 220 1 s"^ in later larger 

versions}, compose the detector chamber. The third or, innermost 

region, is also pumped by a cylindrical liquid nitrogen trap {supple­

mented in later apparati by helium cryopumping} to which a copper block 

has been vacuum brazed. The electron bombardment ionizer [12] is 

mounted on the copper block in the third region and the positive ions 
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Figure 2a. Vertical cross section of the Lee et al. rotating detector 
apparatus [9]. (A) - electron bombardment ionizer; (B) -
quadrupole mass filter; (C) - ion counter; (D) - isolation 
valve; (D) - molecular beam source; (F) - beam flag; (G) -
cold shield; (H) - to ion pumps; (J) - to oil diffusion 
pump; (K) - liquid nitrogen trap; (L) - ball bearing sup­
port of rota table lid; (M) - rotating vacuum seal; and 
(N) - to liquid nitrogen reservoir 

Figure 2b. Horizontal cross section of Lee et al. rotating detector 
apparatus [9] showing arrangement of differential pumping 
for detector and source chambers and beam geometry. The 
scanning range of the detector covers 140°, from 20° beyond 
the atom beam to 30° beyond the molecule beam 
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Figure 3. Perspective drawing of the Lee et al. rotating detector 
apparatus from McDonald et al. [10] 
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formed are injected into the second differentially pumped region where 

a quadrupole mass filter [13] sorts them according to mass-to-charge 

ratio before counting by a Daly ion scintillation counting system [14, 

15]. Each of the three detector regions has changeable slits for 

altering angular resolution. Energetic resolution is accomplished by 

time-of-flight utilizing a single multi-slotted wheel prior to the 

first detector aperture and driven by a motor mounted on the bottom of 

the detector chamber. 

Rotating detector apparatus advantages 

The strong differential pumping in the source regions allowed by the 

fixed configuration provides intense beams and permits a variety of 

beam source designs (e.g., [16,17]) to be accommodated. Similarly, the 

strong differential pumping of the detector and its close proximity to 

the collision region has made studies with high angular resolution 

(%l/2 degree) over a large laboratory range (~140 degrees) of relatively 

low cross section events possible. The overall mechanical convenience 

of the design in operation and assembly is high. 

Rotating detector apparatus disadvantages 

The fixed beam intersection angle of 90 degrees requires utilizing 

heated and/or seeded (e.g., [18]) beam techniques to change the relative 

velocity of the collision. Heating can alter the beam character, while 

seeding necessarily modifies beam composition. Ultimately, the fixed 

crossing angle limits the available kinetics and kinematics of the 

collision. The detector differential pumping is inherently limited 
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both in nature and degree by the rotating lid. Another more severe 

limitation of the rotating detector is the fixed ionizer position; a 

consequence of the fixed bearing diameter. Since the scattered signal 

is proportional to the inverse square of the detector distance L, and 

assuming the background is unchanged with L, the counting time t for a 

signal-to-noise ratio r goes as 

[ 1 + 2 ( I ) ] 
r 

In terms of the prior formulation, it can be shown 

AR/R AR/R 

A"S/"S AL/L 

thus, emphasizing, although expectedly, the importance of detector 

distance. Even in the course of a single experiment, the scattered 
O 

intensity can vary by ^40 (e.g., the elastic scattering studies [19]). 

Therefore, the inescapable experimental compromise, that must be made 

on a case by case basis, between the desired angular and/or energetic 

resolution and 'reasonable' counting times based on signal and noise is 

greatly restricted. Greater time-of-flight resolution via a longer 

flight path is obtained only by the expensive and formidable task of the 

design and construction of another larger apparatus. Further, age has 

set in; the design is about fifteen years old and new approaches have 

evolved as is the usual course of science. Most noteworthy are the 

ever increasing capabilities of lasers [20]. The RDA detector design is 

based on the electron bombardment ionizer; the youthful and promising 



www.manaraa.com

93 

detection scheme of that time. However, this limits the ability of the 

apparatus to incorporate new schemes such as those involving laser 

techniques. It is time for crossed beam apparatus design to evolve. 
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SECTION II. THE ROTATING SOURCE APPARATUS 

Another approach to in-plane molecular beam scattering is via 

rotating sources and a stationary detector chamber. Some early 'primi­

tive' effusive beam apparati used ovens attached to a single rotating 

lid (e.g., [1]). Advancing to nozzle sources requires more strenuous 

differential pumping, but mechanical problems associated with this 

pumping (e.g., moving diffusion pumps) have limited previous modern 

apparati to a single stage of source pumping. This deficiency greatly 

limits source character. Continuous sources suffer reduced intensity 

and/or higher background. Pulsed sources surmount throughput problems 

but are limited in, among other things, universality. The prospect of 

sacrificing variety in the beam sources is very unattractive. And the 

previous arguments concerning signal demonstrate losses in source 

intensity are also highly undesirable. Clearly, source differential 

pumping must be incorporated. 

Although source design presents a problem, detector chamber con­

siderations are very encouraging. A stationary chamber permits great 

freedoms in terms of the nature and degree of pumping desired. Also, 

some of the (aforementioned) problems associated with the rotating 

detector apparatus detection scheme become soluble. 

With this in mind, a rotating source crossed beam apparatus has 

been designed, fabricated and, to an advanced stage, assembled incor­

porating electron bombardment ionization as a universal detection tool. 

The sources are both doubly differentially pumped and the detector 

chamber is triply differentially pumped. A brief description of the 
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mechanical arrangement and vacuum system is given, followed by opera­

tional considerations, specifically resolution, unique to this particu­

lar apparatus. 

Apparatus Description 

On the basis of the vacuum system, the rotating source apparatus 

(RSA) can be divided in two; the main and source chambers and the 

detector chamber. For clarity, they will be described separately and 

throughout this discussion, emphasis will be on the major mechanical and 

vacuum features. Mechanical details may be found by reference to the 

original drawings [2] which are listed by number (RSM-XXXX) for impor­

tant items. Model numbers of commercially available items as well as 

the names and locations of the fabricators of custom items are included 

as references. All figures are to scale, however, a certain degree of 

restraint has been used in order to aid comprehensibility so, in general, 

they are schematic and not meant to substitute for the original drawings. 

Main and source chambers 

Schematic horizontal and vertical cross sectional views emphasizing 

the main and source chambers are shown in Figs, la and lb. 

The main chamber (RSM-MC007) is essentially a rectangular box 

128.3 cm in length, 147.3 cm in height, and 56.0 cm wide fabricated 

(RSM-MC006) [3] with 3.8 cm thick 304L stainless steel plate. The 

thickness of the plates and their arrangement minimize distortion, 

thereby, guaranteeing alignment integrity is maintained after pump down. 

Access to the interior is through the flanged open end, hereafter the 
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Figure la. Horizontal cross sectional view of the rotating source apparatus. Indicated in the 
figure are: 

DC - the detector chamber within which Id, 2d, and 3d indicate the first, second, and 
third detector regions 

ES - the east beam source chamber for which the first and second stages of differen­
tial pumping are indicated by Is and 2s, respectively 

WS - the west beam source chamber pointing upwards and positioned at 90° to the east 
beam source chamber 

RP - rotating plate 

GD - worm gear drive 

SC - aluminum source chamber 

IP - intermediate plate 

DS - second stage source differential seal 

CD - (33.0 cm X  27.9 cm) differential pumping cross 

6 - 2500 1 s~^ diffusion pump 

400 - 8000 1 s~^ diffusion pump 

Q - indicates the detail shown in Figure 2 
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Figure lb. Vertical cross sectional view of the rotating source apparatus (looking east to west). 
Indicated in the figure are; 

DC - the detector chamber within which Id, 2d, and 3d indicate the first, second, and 
third detector regions 

SB - one of two 'strongbacks' 

NP - the main chamber north plate 

RP - (the west) rotating plate 

RR - the 101.600 cm o.d. ring 

AF - the main chamber aluminum flange 

ES - the east beam source chamber 

WS - the west beam source chamber 

10 - a gate-valved 5300 1 s~^ diffusion pump 
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'South'^ end of the apparatus (RSM-MCOll), by removal of the 153.0 cm 

high, 73.0 cm wide, 3.8 cm thick aluminum alloy 6061-T5 'door' (RSM-

MC013). A vacuum seal is made by a 0.953 cm wall diameter, 127.3 cm 

inside diameter (i.d.), custom ground and spliced [4] Viton V747 O-ring 

held by a rectangular groove in the aluminum flange. Directly opposite 

the (south) entry is a 53.340 cm diameter bore through the 'North' wall 

of the chamber (RSM-MC009). This bore and the 66.0 cm diameter spotface 

perpendicular to the bore axis on the exterior of the north wall serve 

to locate the detector chamber. Since the position of the detector 

chamber is critical, two 3.81 cm wide by 5,08 cm high strongbacks are 

welded continuously along the entire 63.5 cm width of the north plate 

34.3 cm above the 53.340 cm bores center to provide additional rigidity. 

Above the upper strongback are two 10.2 cm i.d. ports. The top plate 

of the main chamber (RSM-MCOlO) has an additional five 15.2 cm i.d. 

ports for various feedthroughs. Attached to the bottom plate (RSM-

MC012) are two gate valved [5] "10 inch", 5300 1 s"^ oil [6] diffusion 

pumps [7] backed by a single, 12.61 1 s'^, two stage [8] rotary vane pump. 

The ('East' and 'West') side walls (RSM-MC008) each have a 101.600 cm 

diameter through hole 'line-bored' such that the axes of the bores 

coincide within 2.5 • 10"^ (total). The axis of the 53.340 cm diameter 

bore of the north wall is perpendicular to the axes of the two 101.600 cm 

diameters of the side walls within 5.1-10 cm (total),. Both sides 

The four major points of the compass combined with up and down 
proved extremely useful in (long-distance) discussions with chamber 
fabricators and so will be retained here. 
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have a flat about 7.0 cm wide machined along the outer edge of the 

plates exterior face which serves both sealing and locational purposes. 

These surfaces are flat within 1.5 • 10" cm total and parallel within 

1.5 • 10" cm overall. To within these (extremely 'tight') tolerances, 

the main chamber has reflection symmetry in the vertical plane running 

north-south equidistant between both side walls. Therefore, most other 

pieces are mirror images of each other. 

Bolted to each side is a 144.1 cm high, 119.4 cm wide, ~2.5 cm 

thick 304 stainless steel plate referred to as the intermediate plate 

(RSM-BSOOl, RSR-BS002) [9]. The side of the intermediate plate, 

hereafter the I plate, against the machined surface of the main chamber 
p 

is flat to 1.3 • 10" cm total and bears a rectangular 109.2 cm by 

134.0 cm 0-ring groove. The seal i.d. is approximately 472 cm and made 

with a single splice from 0.95 cm wall diameter butyl cord stock using 

Eastman 910 adhesive. Because the machined flats do not extend across 

the entire surface of the east and west main chamber sides, the I plates 

are 'relieved' to approximately 0.6 cm depth inside the rectangular 

0-ring groove to prevent mechanical interference on assembly. The gas 

normally entrapped in the space between each I plate and the main cham­

ber wall is evacuated via 0.9 cm i.d. copper tubing connected to the 

main chamber. The important purpose of the I plate(s) will be given 

following a description of the source chambers. 

Bolted to the rear of each I plate, along the same bolt-lines that 

attach the I plate to the main chamber, is a 132.7 cm high, 107.9 cm 

long, 52.7 cm wide 6061-T6 aluminum alloy source chamber (RSM-BS006) 
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[10]. The source chamber is open on the 132.7 cm by 107.9 cm side and 

bolts to the back of the I plate by a 119.4 cm by 144.1 cm, 3.2 cm thick 

flange. A rectangular 104.8 cm by 129.5 cm 0-ring groove in this flange 

accommodates another 0.95 cm wall butyl seal of about 452 cm i.d. 

fabricated as previously described for the I plate seals. This seal 

between the aluminum source chamber and the I plate is located almost 

directly above the I plate - main chamber seal. Thus, the huge force due 

to the atmospheric pressure, ~1.5 • 10^ kilograms, completes 0-ring 

compression. Because the seals are near the edges of the main chamber, 

the total atmospheric force appears essentially as compression and, 

therefore, results in very little plate deflection, again, important 

for alignment integrity. The top, 3.8 cm thick plate of the aluminum 

source chamber (RSM-BS009) has two 10.2 cm, one 25.4 cm, and one 2.5 cm 

i.d. ports. Similarly, the south 3.8 cm thick wall (RSM-BSOlO) has a 

single 15.2 cm and 25.4 cm i.d. port. To avoid the possibility of 

interference with detector chamber items, the north, 3.8 cm thick wall 

is featureless. Attached directly to the south side of the (3.8 cm 

thick) bottom plate (RSM-BS008) is a "16 inch", 8000 1 s~^ oil [11] 

diffusion pump [12] backed by a two stage, 17.3 1 s'^ [13], rotary vane 

mechanical pump. Enough space has been reserved on the (north side of 

the) bottom plate to accommodate another diffusion pump of the same 

[12] or smaller size. The rear (5.1 cm thick!) plate (RSM-BSOll) has 

two 15.2 cm, one 36.2, and one 33.65 cm i.d. ports. Limited rear 

access to these chambers after assembly is through the 36.2 cm i.d. port. 

A 33.0 cm outside diameter (o.d.) 304 stainless steel 0.32 cm wall tube 
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(RSM-BS022) is inserted into each aluminum source chamber through the 

33.65 cm port. Also, mounted on this port at the rear of the 33.0 cm 

o.d. tube is a 33.0 cm o.d. by 27.9 cm o.d. 304 stainless steel cross 

(RSM-BS015) [14]. Hanging vertically from the cross 27.9 cm arm is a 

"6 inch" 2500 1 s~^, oil [11] diffusion pump [15] backed by a two stage, 

12.6 1 s"^ [8], rotary vane mechanical pump. Mounted on the bottom 

plate corners of both aluminum source chambers are four [16] ball 

bushings on two 137.2 cm long, 3.175 cm o.d. case-hardened steel rods. 

The rods are perpendicular to the main chamber sides within 5.1 • 10" 

— ? 

cm in 30.5 cm and parallel within 2.5 • 10" cm total. This bushing 

system allows assembly and disassembly of the aluminum source chamber 

and I plate as well as aids the removal and installation of the I plate. 

The very low friction of the bushings permit the massive (~8 • 10 kgs) 

source chamber and I plate to be easily moved. General manipulation and 

assembly of all the chambers, stands, pumps, etc. was assisted by a 

translating overhead i-beam system with a movable one-ton electric 

hoist. These two systems are so efficient and convenient, a single 

(competent) researcher can perform all the required operations. 

Now that the I plate is understood to be an independent piece 

sandwiched between the main and source chamber, its singularly important 

purpose can be described in detail. Off the center of the I plate to 

the north is a raised (^#.28 cm high, 93.980 cm diameter) circular step. 

A 304 stainless steel ring (RSM-MC016) precisely 'keys' to this step on 

its i.d. The concentric outer diameter of the ring is precisely fit, 

with less than 2.5 • 10" cm clearance, to the 101.600 cm bore of the 
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main chamber. The rings outer diameter is tapered 1/2 degree to aid 

installation, however, because the ring-I plate assembly is fairly 

massive and the fit very 'tight', the entire unit is made self-aligning 

on assembly by a spring loaded carriage. (Attempting to force the 

pieces together or apart would destroy the locational nature of the fit 

at the very least.) Also, precisely fit to the inner (93.980 cm) 

diameter of the ring is an X contact [17] bearing. Fitted to the 88.900 

cm bore of the bearing facing the main chamber is the rotating plate 

(RSM-BS020, RSM-BS021) and on the side toward the aluminum source cham­

ber is the rotating retaining ring (RSM-BS025). The stainless steel 

rotating ring has two purposes; first to secure the rotating plate to 

the bearing and second to provide a sealing surface. The other sealing 

surface is a polished 90.115 cm bore in the I plate concentric with the 

raised circular step and, therefore, also the bearing. The seal is made 

by a graphite embedded Teflon [18] Tec-Seal. This design permits all 

heavy steel items to be assembled prior to installation of the delicate 

Tec-Seal. Movement of the Tec-Ring from the groove is prevented by an 

aluminum retaining ring (RSM-BS037) bolted to the source chamber side of 

the I plate. The situation is diagrammed in Fig. 2. Bolted to the 

center of the rotating ring, extending into the aluminum source chamber, 

is a 30.2 cm o.d., 1.3 cm wall tube 'keyed' to be concentric with the 

88.900 cm diameter of the rotating plate which contacts the bearing. This 

tube has two functions; first to drive the rotating plate and second, 

as will be discussed later, to provide pumping. Pressed onto the tubes 

o.d., about 19 cm from the rear face of the rotating plate, is a 



www.manaraa.com

Figure 2. Detail of the rotating plate, bearing, and seal assembly. Indicated in the figure are: 

1 - (north wall of the) main chamber 

2 - intermediate plate 

3 - aluminum source chamber 

4 - 'relieved' section of intermediate plate 

5 - Tec-Seal aluminum retaining ring 

6 - Tec-Seal 

7 - rotating retaining ring 

8 - rotating plate 

9 - beam source chamber (this position is inaccessible after detector chamber 
assembly) 

10 - bearing 

11 - 101.600 cm o.d. ring 
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Detail of the rotating plate, bearing, and seal assembly 
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phosphor bronze, 100 tooth, 8 diametral pitch, worm gear. Engaging the 

worm gear is a mating hardened steel worm [19] mounted on a stainless 

steel shaft. This drive shaft is coupled through the 2.5 cm port of the 

top plate of the aluminum source chamber to a microprocessor controlled 

(refer to Appendix B) stepping motor [20]. Thus, both (east and west) 

rotating plates are independently rotatable. Beyond the worm gear, the 

30.2 cm o.d. tube is connected to the 33.0 cm o.d. tube inserted through 

the 33.2 cm i.d. port of the aluminum source chamber. The connection is 

made vacuum tight by a movable 0-ring face seal attached to the 33.0 cm 

o.d. tube and another 0-ring shaft seal on the o.d. of the 30.2 cm tube. 

This arrangement isolates the interior of both tubes from the interior 

of the aluminum source chamber, allows the rotation of the inner 30.2 cm 

tube, and is designed to be self-aligning on assembly and during opera­

tion. The face view of the rotating plate (Fig. 3) shows a cutout be­

ginning at a radius of 17.1 cm and ending at 40.6 cm. The angular span 

of this 'window' is 80 degrees total. Along the line 35 degrees from 

the edge of the 'window' and on either side of the 29.2 cm bore are 

1.27 cm diameter 'tool' steel dowel pins. The beam source chamber is 

located by these dowel pins on this surface (facing into the main cham­

ber) of each rotating plate. 

Since the shapes of the beam source chambers are irregular, they 

are difficult to describe. Reproductions of front and rear photographs. 

Figs. 4a and 4b, respectively, and the dimensional schematic top view of 

Fig. 4c should aid visualization and, thereby, an understanding of the 

function. Essentially, the beam source chamber is a 65 degree wedge 
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29.2 cm 0 

17.1 cm R 

40.6 cm 

45 

35  

Figure 3. Front face of the rotating plate (dashed circle indicates 
the inside diameter of the bearing) 
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Figure 4a. Front view of beam source chamber 
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Figure 4b. Rear view of beam source chamber (notice the nosepiece and 
rotating plate 'windows') 
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5 cm. 

Figure 4c. Top view of beam source chamber 
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fabricated from 0.32 cm thick 304 stainless steel sheet. One side of 

the wedge is extended about 26 cm down from the top. The interior is 

partitioned, top to bottom, into two regions by a 0.63 cm thick wall 

which meets the 30 and 35 degree side walls (refer to Figs. 4). At 26 cm 

below the top, a semi-circular wall extends from the 30 degree side of 

the 0.63 cm wall to the extended (45 degree) wedge wall and beyond. 

Thus, the beam source chamber consists of two regions. One large 

trapezoidal region which, when the beam source chamber is installed, is 

directly above the 'window' of the rotating plate and another smaller 

volume, shaped like a trapezoid on top and a quarter of a cylinder on 

the bottom, open to the 29.2 cm diameter of the rotating plate. Bolted 

into a 14.6 cm wide by 24.1 cm window in the 0.63 cm partition is one of 

several possible source nosepieces (RSM-BS036, RSM-BS043, RSM-BS044). 

This is shown in the partial cross section of the front of the beam 

source chamber. Fig. 4d. These various interchangeable nosepieces pre­

cisely position the (nozzle) source (e.g., RSM-BS049) and skimmer [21] 

system at several discrete distances from the axis of rotation. Continu­

ous adjustment of the (nozzle) source-skimmer distance to optimize beam 

character, while under vacuum, is made by a drive connected through the 

rear port of the beam source chamber to a port in the main chamber door 

when the beam source is alligned with the detector axis. Now one sees 

the first stage of differential pumping (i.e., between the source and 

the skimmer) takes place through the large 80 degree 'window' of the 

rotating plate. The distance from the (crossed) beam plane to the bot­

tom of the rotating plate 'window' is comparatively short and the area 
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Figure 4d. Cross section of beam source chamber near the axis of 
rotation. Indicated in the figure are: 

1 - beam source chamber 'lid' 

2 - lid seal 

3 - beam defining aperture 

4 - source nosepiece 

5 - source alignment fixture 

6 - schematic room temperature source 

7 - skimmer 

8 - first stage of source differential pumping 

9 - second stage of source differential pumping 

Note: the collision region is located at the intersection 
of the molecular beam axis, indicated by the hori­
zontal line, and the axis of source rotation indi­
cated by the vertical line 
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\\\\\\\\\\\ 

Figure 4d. Cross section of beam source chamber near the axis of 
rotation 
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of the 'window' large, so the (effective) pumping speed of the aluminum 

source chambers 8000 1 s"^ diffusion pump remains high. In terms of 

distance, the differential pumping of the second stage (i.e., after the 

skimmer and before the second, beam defining aperture) appears less 

favorable (refer to Fig. la). Gas exiting the 29.2 cm i.d. bore must 

travel through the 30.2 cm o.d. rotating tube and stationary 33.0 cm 

o.d. tube before reaching the 33.0 cm by 27.9 cm cross and the 2500 1 

s~^ diffusion pump. Although the ratio of length-to-radius for the con­

necting tubes is, unfortunately, high (L/r ~ 5, refer to Appendix A), 

sufficient conductance is maintained by the large value for r. 

Notice that although each beam source rotates freely and independ­

ently with two stages of differential pumping, there are no moving 

pumps. The rotating beam source chambers are mounted such that the 30 

degree side of the upper wedges can touch. This means the beam crossing 

angle, r of Fig. 1, can be as small as 60 degrees. After choosing a 

particular beam crossing angle, the beam source chambers remain fixed 

at that relative angle as they are rotated together about the detector. 

Contact between the 35 degree side of the beam source chamber with the 

detector chamber limits the angular range (refer to Fig. lb). For 

example, if the beam crossing angle is 90 degrees, a total angular 

range of 150 degrees is available. If the intersection angle is chosen 

to be 60 degrees, the permitted angular scan becomes 180 degrees. In 

fact, any crossing angle between 60 degrees and 240 degrees is mechani­

cally possible. 
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The photograph of Fig. 5 shows the main and aluminum source cham­

bers, forelines and pumps, etc. as viewed from the 'southwest' corner. 

Figure 6 shows the apparatus with the west aluminum source chamber 

retracted and the main chamber door removed. The rotating plate drive 

and beam source chambers (inside the main chamber) are clearly visible. 

A final note about the vacuum system is in order. Special design 

and operation of the forelines avoids excessive pressure differences in 

the beam source chambers during pump down. All diffusion pumps are 

protected against the failure of cooling water, foreline vacuum, and 

for pump overheating via individual, interlocked diffusion pump con­

trollers (RSM-EOOl, RSM-E002). 

The detector chamber^ 

The horizontal and vertical cross sectional views of the detector 

chamber shown in Figs. 7a and 7b, respectively, will be helpful in 

understanding the description that follows. 

Essentially, the detector chamber (RSM-D006) [22] is an internally 

partitioned 50.8 cm o.d., 0.32 cm wall tube with a 50 degree beveled 

front. The 0.48 cm thick wall of the bevel begins at a 1.3 cm thick 

front faceplate (RSM-D007) which is, at the closest point, 6.35 cm from 

the beam source axis of rotation. The bevel continues back 31.8 cm 

before being joined to the tube by two 0.48 cm thick semicircular 

plates. At a distance of 53.3 cm from the detector faceplate is a 

^Unless specified otherwise, all materials are 304 or 304L stain­
less steel. 
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Figure 5. View of main and source chambers (from southwest corner) 
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Figure 5. The RSA with the west source chamber retracted and main chamber 
flange removed 
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Figure 7a. Horizontal cross sectional view of the detector chamber. Indicated in the figure are: 

1st, 2nd, 3rd - the first, second, and third detector regions, respectively 

E, W, N - the east, west, and north main chamber plates, respectively 

D - the detector 

R - (one of the two) rails 

1 - faceplate 

2 - siide valve 

3 - aperture fixture 

4 - innermost region flange 

5 - liquid nitrogen dewar 

6 - one of four vertical 'strongbacks' 

7 - detector chamber (64.8 cm o.d.) flange 

8 - reinforcing band 

9 - 220 1 s"^ ion pump 

10 - electropneumatic gate valve followed by 330 1 s"^ 

11 - wire seal flanges 

13 - 220 1 s'^ ion pump port 

14 - rotary motion feedthrough 

15 - "10 inch" Confiât flange 
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2nd 

3rd 1st 

I  1 25  cm 

Horizontal cross sectional view of the detector chamber 
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Figure 7b. Vertical cross sectional view of the detector chamber. Indicated in the figure are: 

1st, 2nd, 3rd - the first, second, and third detector regions, respectively 

N - the main chamber north plate 

D - the detector 

R - 'rail' 

1 - faceplate 

2 - aperture fixture 

3 - innermost region flange 

4 - liquid nitrogen dewar 

5 - (one of two) main chamber strongbacks 

6 - detector chamber (64.8 cm o.d.) flange 

7 - reinforcing band 

8 - wire seal flanges 

9 - 220 1 s"^ ion pump 

10 - "10 inch" Confiât flange 

11 - liquid helium cryopump 
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2nd 1st 

I  1 25  cm 

Vertical cross section of the detector 
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64.8 cm o.d., 4.5 cm thick flange welded to the 50.8 cm tube o.d. A 

precise circular 'key' machined on this flange locates the detector 

chamber in the 53.340 cm bore of main chamber north wall. A 0.70 cm 

wall diameter Viton 0-ring in a groove on the detector chamber flange 

seals against the 66.0 cm spotface. Back 11.4 cm from the flange face, 

away from the main chamber and outside the vacuum, is a 20.3 cm wide, 

1.3 cm thick band welded intermittently about the o.d. of the 50.8 cm 

tube. This band greatly enhances rigidity and the detector stand, which 

supports the detector chamber, is attached at the bottom of the band. 

A "24 inch" female wire seal flange [22] is welded to the 50.8 cm o.d. 

tube 2.4 cm behind the band. The mating male wire seal flange [22] is 

welded onto a 31.1 cm long, 50.8 cm o.d, tube of 0.32 cm thickness 

which forms a separate piece referred to as the detector chamber cap 

(RSM-D016) [22]. A set of [23] ball bushings on 1.588 cm o.d. case-

hardened steel rods mounted to the detector stand, in an arrangement like 

that of the aluminum source chambers, allows for the assembly of the 

detector cap with the rest of the detector chamber. 

The interior of the 50.8 cm o.d. tube forward of the female wire 

seal flange is vertically partitioned into three regions (refer to Figs. 

7). At distances 8.9 cm and 16.5 cm from the faceplate, and parallel 

to it, are two 0.48 cm thick vertical walls (RSM-D008). The upper and 

lower edges of these plates are welded to the two bevel faces. The 

sides of these plates are joined to two parallel vertical (0.48 cm 

thick) walls spaced 17.8 cm apart and parallel to (and symmetric about) 

the tube axis. These two partitions, which run lengthwise in the tube 
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each end at a perpendicular, half-moon shaped, 0.48 cm thick plate 

(RSM-D009, RSM-DOll). This arrangement of vertical plates divides the 

detector tube into three separate regions. The first region extends 

from behind the faceplate and before the parallel wall 8.9 cm behind 

it, along the east side of the tube in the semicircular channel (16.5 

cm at the widest point) to the rear 'half-moon' wall. In the same man­

ner, the second region extends along the other (i.e., west) side of the 

wall 8.9 cm from the faceplate and in front of the wall 16.5 cm back. 

The third or innermost region begins 16.5 cm behind the detector face 

and extends through the 17.8 cm wide central channel into the interior 

of the detector cap. 

Three short (~2.2 cm), symmetrically oriented 15.2 cm o.d., 0.32 

cm wall tubes with "8 inch" o.d. Confiât flanges connect through the 

1.3 cm thick band to the first region (RSM-D012). Various feedthroughs 

are accommodated by the two tubes oriented 45 degrees above and below 

the horizontal tube. Attached to the "8 inch" o.d. Confiât flange of 

the horizontal tube is a specially modified (RSM-D030) [24] electro-

pneumatic swing gate valve. Mounted to the rear of this gate valve is 

a 330 1 s"^ [25] turbomolecular pump which provides pumping for the first 

region. A two stage, 3.8 1 s~^ [26], rotary vane mechanical pump backs 

the turbomolecular pump via a liquid nitrogen and sieve trapped foreline. 

A protection circuit (RSM-E004) closes the swing valve and an electro­

magnetic valve [27] in the foreline upon loss of coolant, power, fore-

line pressure or turbomolecular pump rotation. In this manner, the 

turbomolecular pump is isolated from the first region of the detector 
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chamber and the foreline in the event of an accident, thereby, insuring 

cleanliness of the detector chamber. 

Another horizontal tube and inclined tube of the same description 

connect through the west side of the band (RSM-DOlO) into the second re­

gion. Again, various feedthroughs enter the "8 inch" o.d. Confiât 

flange of the inclined tube while the horizontal tube serves for pumping 

purposes. In this case, attached to the horizontal tube is a 220 1 s"^ 

[28] ion pump. 

Pumping of the innermost region takes place through the detector 

cap. Another 220 1 s~^ [28] ion pump is connected vertically, via an 

"8 inch" o.d. Confiât flange on a 0.32 cm wall, 15.2 cm o.d. tube, to the 

bottom of the detector cap. Mounted vertically on the top of the detec­

tor cap, via a "10 inch" o.d. Confiât flange on a 0.32 cm wall, 20.3 cm 

o.d. tube, is a custom fabricated [29] helium cryopump. In the rear 

view of the detector chamber of the photograph of Fig 8, the detector 

cap and detector chamber pumping systems are readily visible. 

Forward of the wire seal flange is the liquid nitrogen dewar (RSM-

D014) [22] which is shaped to fit just inside the contours of the inner­

most region. Essentially, the dewar is a box within a box with liquid 

nitrogen filling the space between the box walls (refer to Figs. 7a and 

7b). A 'reversed' Confiât flange (RSM-D015) on the top of the dewar 

and its mate, which is welded to a flexible bellows [30], connect the 

dewar to the liquid nitrogen source through a 0.32 cm wall, 10.2 cm o.d. 

tube with a "6 inch" o.d. Confiât flange welded into the top of the 

innermost region through the band. The liquid nitrogen dewar surrounds 

the translating detector. 
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Figure 8. View of the north side of the RSA 
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The entire detector is carried on four 440C stainless steel wheels 

which ride on two 0.64 cm thick, 101.6 cm long 'rails'. A 0.635 cm o.d. 

threaded rod (at 7.87 threads per cm) connected via a right angle drive 

to a ultra-high vacuum rotary feedthrough [31] mounted on a "mini" 

(3.38 o.d.) Confiât flange in the detector chamber cap provides transla­

tion. (The actual situation is slightly more complex in that special 

materials and methods are required.) The total movement possible is 

about 60 cm. 

The detector itself (refer to Fig. 9) consists of three parts; the 

ionizer, quadrupole mass filter, and the Daly [32] scintillation ion 

counter. The (present) ionizer design was generally provided by Richard 

J. Buss of Yuan T. Lees' research group at the Lawrence Berkeley Labora­

tory, Berkeley, CA. All the ion lenses were plated with gold [33] to a 

thickness of 1.3 • 10" cm. The ionizer filament is a 2% thoriated 

tungsten, 1.78 • 10" cm diameter wire [34]. Protracted attempts to 

obtain the cylindrical grid or 'cage' required for construction of the 

ionizer from a commercial source proved futile. Modifying (RSM-D037, 

RSM-D038) a mandrel design graciously provided by Randel K. Sparks of 

the California Institute of Technology in Pasadena, CA allowed a 2.9 cm 

_ 2  long, 1.6 cm o.d. cage to be fabricated from 3.81 • 10 cm diameter 

platinum wire. Spot welding fastened the cage to the appropriate lens. 

The ionizer is assembled on four 0.157 cm diameter alumina rods mounted 

to the faceplate (RSM-D035) of the quadrupole 'can' (RSM-D019), A 0.64 

cm hole in this plate allows the ions to be injected into the quadrupole 

mass filter. Located by surfaces inside the quadrupole can are two 
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Figure 9. Vertical cross section of the detector. 

I. - the ionizer 

1 - the filament 

2 - the platinum cage 

Q.M.F. - the quadrupole mass filter 

3 - 'can' faceplate 

4 - Macor spacer 

5 - quadrupole 'can' 

6 - quadrupole rods (2 of 4) 

7 - can rearplate 

8 - exit lenses 

D.S.C. - Daly scintillation counter 

9 - 7.6 cm o.d. cross 

10 - -30 kV feedthrough 

11 - ion target 

12 - aluminum coated scintillator 

13 - mu-metal shield 

14 - glass-to-stainless seal 

15 - photomultiplier tube 

16 - flexible bellows 

17 - dynode 'can' 

Indicated in the figure are 
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Vertical cross sectional view of the detector chamber 
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Macor spacers (RSM-DOOl) which hold the four 21.08 cm long, 1.9055 cm 

diameter quadrupole rods. Each rod was centerless ground to provide 

highly accurate cylindrical surfaces which were subsequently polished 

and gold plated (RSM-D002). Ions transmitted by the mass filter exit 

the quadrupole can rearplate (RSM-D028) where two gold plated 'exit' 

lenses (RSM-D003, RSM-D005) accelerate them into the scintillation 

counting system. A 0.15 cm wall, 7.6 cm cross is attached to the end of 

the quadrupole can by one arm of the cross (RSM-D002). The -30 kV ion 

target (RSM-D027) of the counting system is positioned by a high voltage 

feedthrough [35] welded into a flange mounted at the top of the cross. 

The 3.81 cm diameter face of the ion target has been vacuum coated [36] 
o o 

with aluminum to a thickness between 2000 A and 2500 A. Directly oppo­

site the target, in the lower arm of the cross, is the aluminum coated 

face of the 4.9 cm diameter, 2.0 mm thick Pilot B plastic scintillator 

[37]. The uncoated face of the plastic scintillator is cemented (by NE 

581 optical cement [37]) directly to the face of an RCA 8850 photomulti-

plier tube. Since photon counting with the photomultiplier requires the 

photocathode to be held at about -3 kV, the mu-metal shield around the 

upper half of the phototube and the aluminized face of the scintillator 

are floated at this (photocathode) voltage so collection and focusing 

by the dynodes remains uneffected. The phototube holder (RSM-D020) has 

a custom glass-to-stainless steel seal [38] to insulate the upper, 

floated section from the lower, grounded portion which contains the 

photomultiplier dynode chain. A special Diamonite glazed ceramic 

socket [39] plugs onto the rear of the 8850 phototube and supports the 
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high vacuum compatible resistors [40] and capacitors [41] of the dynode 

chain. Since there is no seal at the aluminized face of the scintilla­

tor, this entire section containing the scintillator, phototube, dynode 

chain and socket is evacuated via a 47.0 cm long, 3.53 cm i.d., 4.80 cm 

_2 
o.d., 1.0 • 10" cm wall flexible bellows [42] to minimize outgassing 

into the innermost region. (This is the reason for using the special 

socket and dynode chain components.) The other end of the bellows con­

nects into the first region through a port in the 'half-moon' plate. A 

ceramic bead insulated, oxygen-free copper wire and a shielded cable 

[43] inside the bellows provide the phototube voltage and signal connec­

tions, respectively, between the dynode chain and feedthroughs mounted 

on "8 inch" Confiât flanges in the first region. All other connections 

are outside the bellows and are made to feedthroughs on the first and 

second region "8 inch" Confiât flanges via feedthroughs in flanges on 

both 'half-moon' plates. (This arrangement of 'differentially pumped' 

feedthroughs minimizes connections through the detector chamber wall 

into the innermost region, thereby, maintaining the highest possible 

vacuum for this most critical region.) Extension springs (RSM-D041), 

wound from 1.3 • 10' cm diameter beryllium copper [44], provide voltage 

for the ion and exit lenses. The springs are supported on 0.48 cm o.d., 

8.9 • 10" cm wall insulated stainless steel tubes mounted parallel to 

the 'rails'. An unsupported extension spring of 5.1 • 10" cm diameter 

beryllium copper wire supplies the -30 kV of the ion target. The ion­

izer filament and quadrupole mass filter connecting wires are insulated 

but unsupported. In this way, electrical connections are secure and 

permit unimpeded translation of the detector. 
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At any position of the detector, the detection scheme for the scat­

tered particles in this arrangement is as follows. Particles entering 

the ionizer are ionized and extracted, then injected into the mass fil­

ter. 'Filtered' positive ions leaving the quadrupole are accelerated by 

the exit lenses into the high field which bends the ions from their 

axial paths to strike the ion target. The impacting ions liberate sev­

eral electrons per ion (e.g., ~7 electrons per ion, ~5 electrons per 

ion) from the target which accelerated by the field into the plastic 

scintillator. Thus, bombarded the plastic fluoresces and the resulting 

photons are multiplied by the phototube into a signal subsequently 

handled by standard photon counting techniques. A 'molecular beam timer 

and gate' [45] chops the detector signal at the beam modulating fre­

quency of 150 Hz into 'open' and 'closed' channels which are treated as 

discussed in the Signal Considerations passage (and refer to Appendix 

B). 

Characteristics of the Rotating Source Apparatus 

Two important criteria under which crossed beam apparati may be 

assessed are resolving power and inherent flexibility. Discussion of 

resolution in crossed beam experiments centers on angular and energetic 

matters. These are not separable subjects, however, as a concession to 

clarity, they will be presented as such. In this approach, motives for 

particular features of the design and its flexibility will become 

evident. These topics will be further refined and elaborated on in the 

Summary and Suggestions for Future Research. 
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Angular resolution 

The extent to which the prior and post collision trajectories are 

specified determines the angular resolution. As previously indicated, 

this is one of the dual purposes of the defining apertures and illus­

trating the criteria which determines their dimensions is the purpose 

of this section. 

Consider the general case of a single beam generated by two sym­

metrically aligned apertures as shown in Fig. 10. The (in-plane) width 

of the umbra of the beam, W^, formed by the rear aperture (i.e., the 

skimmer) of width a distance dj^p from a forward aperture of width Sp, 

at a distance dp^ beyond the forward aperture is 

+ .  ( I )  

Similarly, the penumbra breadth, W^, at dp^ is 

n dpp + dpy 
„P . (Sp + S^) ( ) - SR . (2) 

The ratio of the penumbra width to umbra width for a given configuration 

may be written as 

— = -c d • (3) 

W" ( ^ ) - 1 + ( ' 
^RF ^FZ 

A sharply defined 'ray' occurs for 
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Figure 10. Single defined beam 
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This requires 

J  = 1  .  (4 ,  

dpz 
FZ . 0 . (5) 

Large values for dj^p imply large distances between the (nozzle) source 

and the collision zone and correspondingly low reactant intensities. 

Therefore, a relatively small value for dp^ is the preferred choice. 

The desire for well-defined beams will become apparent shortly and rep­

resents one of several arguments for a short distance (dp^) between the 

final defining aperture and the collision zone. Now that the single 

beam configuration is well in hand, the crossed beam situation may be 

tackled. 

Figure 11 shows the (exaggerated) crossed beam situation for beam 

intersecting angles r of t t /Z and n/3. Changes in r are accompanied by 

changes in the geometry of the collision zone. For a particular set of 

apertures, the height of the collision region is uneffected, but the 

area parallel to the beam plane is angle dependent. Assume, as a 

first approximation, both beams are sufficiently defined that their 

widths^ at the collision zone, and Wg, are constant over the length 

of the collision region. This neglect of beam divergence is fairly 

The arguments that follow are not effected by whether these are 
the umbra or penumbra widths. The proper choice will become obvious. 
For the moment, consider Eq. (4) describes the situation. 
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Figure 11. Crossed beam situation for crossing angles of n/Z and it/3 
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wel1-justified since typical beam angles are less than or approximately 

equal to 2 degrees. This assumption allows the collision regions (in-

plane) area to be simply expressed as a function of the beam widths and 

crossing angle (0 < r < t t) 

W Wp 
" sTnT • (G) 

Changing r to tt/S (or 2m/3) increases the collision volume over that of 

r = t i /2 by 15%. From the viewpoint of Eq. (3) of Part I, Section I for 

the number scattering per second, the larger the collision volume 

the greater the scattering signal. However, all the scattered intensity 

must be available to the detector to (potentially) be signal. Choosing 

to guarantee the maximum possible signal by operating with a collision 

zone larger than the detector 'sees' (pseudo-high resolution) introduces 

an angular bias into the scattering data. Theoretically, this prejudice 

may be corrected [46] by calculating the actual collision volume viewed 

by the detector at each angle (e.g., [47]), but the process is tedious 

and, in view of the necessary assumptions concerning the experimental 

geometry and distributions of velocities and densities in the (idealized) 

zone, is questionable in its utility. The entire issue is best avoided 

[48]. Thus, one is compelled to compromise between large collision 

volumes entirely 'visible' to the detector and the desired high angular 

resolution in detection. It is at this juncture that the issue of 

resolving angular information in initial and final states and experi­

mental geometry becomes concrete. 
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Of interest then is the largest dimension of the collision zone. 

Simultaneous with the increase in collision volume on changing r from 

•ïï/2 is the distortion of the diagonals of the formerly rectangular in-

plane area to the long and short diagonals of the resulting parallelo­

gram. The length of the long diagonal as a function of the crossing 

angle, Y(r), and the (nondiverging) beam widths is given by 

P W„ 2 1/2 
Y(r) = Wj{l+ [ (^) CSC r + cos r] } .(7) 

This, potentially, is the limitation of the angular resolution. To de­

cide how large one can allow it to be and, thereby, the crossed beam 

widths, requires consideration of the detector geometry. 

The maximum angular (penumbra) width viewed by the detector 0^, 

if all the (square^) defining apertures are perfectly aligned and of 

equal width 5^, with Lj^p the distance between the first and last, is 

(refer to Fig. 12) 

Sn 
On = 2 arctan ( -,— ) . (8) 
^ "-RF 

The angle 0^ represents the most deviant angle of acceptance for scat­

tered product by the detector and is, by definition, the laboratory 

angular resolution. As an example, the distance between the forward 

aperture on the nosepiece (RSM-D029) in the detector chamber faceplate 

^Square detector apertures make the in-plane and out-of-plane 
laboratory resolutions equal. 
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Figure 12. Detector view of the collision zone 
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(refer to Figs. 7a and 7b) and the aperture on the electron bombardment 

ionizer of the detector (in the most forward position) is roughly 20 cm. 

Requiring 2 degree resolution specifies apertures 0.35 cm square. The 

corresponding maximum width at the collision zone is given by Eq. (2), 

in which dj^p = L^p = 20 cm and dp^ = 6.4 cm = Lp^, as 0.57 cm. This 

becomes the largest allowable value for the transverse dimension of the 

collision zone Y(r) and nominally specifies, for = Wg, beam widths of 

'vO.29 cm at the collision region for r = t t /3. Increasing the resolution 

requires reducing the width subtended by the detector and concommi-

tantly the collision volume must contract to avoid the viewing factor 

p r o b l e m .  I n  t h e  c a s e  o f  t h e  r o t a t i n g  d e t e c t o r  a p p a r a t u s ,  t h e  o n l y  a v e n u e  

whereby resolution improves is the reduction of the detector apertures. 

For a fixed ionizer position, one can see from the equations provided, 

where is the ith beams width at the collision zone. Because the 

signal S observed by a detector of effective area a distance L from 

a collision region of volume follows 

A, 
S « T? ( "2 ) , (11) 

these relationships are indeed unfortunate. Improving the resolution 

for the rotating detector experimental arrangement by a factor of two 

®D " ^0 (9) 

and 

(10 )  
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requires reducing the detector apertures (S^) and beam widths (W^.) in 

half. Narrowing the (square) apertures in front of the electron bom­

bardment ionizer by a factor of two decreases the effective area by 

four. Efficiently using this ionizer^ means utilizing as much as pos­

sible of the total 'active' ionizing volume. The ambient background of 

the innermost detector region is free to experience this total volume 

while the scattered signal, after restriction by the apertures, 'sees' 

an effective area (A^) multiplied by the active length of the ionizer 

as the effective volume. Clearly presenting the largest possible area 

of the ionizer achieves the highest ratio of the effective volume to 

the available volume, however, this directly opposes the desire for in­

creased resolution. With the decrease in the beam widths, there is also 

a (requisite) reduction in 

( 1 2 )  

Therefore, on the basis of Eqs. (8), (9), 10), and (12), the signal for 

the fixed detector position, (which is the case for the rotating 

detector apparati), as a function of the angular resolution is 

sF'°- . e® (13) 

and increasing 0^ by 2 diminishes the signal by a factor of 32. 

These considerations argue for a 'tailored' ionizer. In view of 
this and documented [49] unfavorable behavior for this ionizer design 
(especially in time-of-flight), another taylored ionizer is planned for 
the future. 
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The same situation is available to the rotating source apparatus. 

(In fact, an arrangement for adjustable apertures is planned since there 

are advantages in terms of conductance.) However, an alternative method 

of improving resolution is possible by translating the detector without 

changing the apertures. Equation (8) implies 

0Q = ^ (14) 

The expression for the signal, Eq. (11), is encouraging in that re­

mains unchanged but discouraging in view of the inverse square dependence 

on L. Fortunately, as the ionizer retracts, the geometry of the situa­

tion requires only small reductions in the beam widths and, therefore, 

the collision volume remains substantially undiminished. Then, as a 

first order approximation, the signal as a function of the resolution in 

the translating detector scheme follows 

sT'D" - 0^ (15) 

which demonstrates a strong advantage for the rotating source apparatus. 

Calculations based on the actual geometry show moving the ionizer from 

the most forward position to that which provides a factor of two im­

provement in resolution results in a signal diminished by a factor of 

about six. Nonetheless, the advantage of the translating detector 

scheme remains apparent in conveniently obtaining higher resolution at 

lower sacrifices in signal. Further, from an operational standpoint, 

the experimental situation may be continually optimized on the basis of 

the available signal and the desired resolution, thereby, obviating the 



www.manaraa.com

144 

highly undesirable task of venting the (ultra-clean, ultra-high vacuum 

of) detector chamber to change the apertures. 

Energy resolution 

Full treatment of the energetics of the initial and final states of 

crossed beam experiments requires specific information about internal 

state distributions. The rotating source apparatus employs supersonic 

expansion in beam generation and, in the absence of any further initial 

state selection, can only be said to provide beams with internal state 

distributions 'relaxed' compared to those of the stagnation conditions 

in the nozzle to an extent dependent on those conditions and the species 

involved. Generally, supersonic beam vibrational and rotational dis­

tributions correspond to effective temperatures on the order of tens of 

degrees and degrees Kelvin, respectively, while translational distribu­

tions with full widths (AV) at half the maximum speed (V) are commonly 

about 10% (= AV/V). Post collision internal state information must be 

obtained either directly by a state selective technique or inferred by 

application of conservation of energy to measured translational energy 

(change) of the products. State selective methods tend to be highly 

species specific [50,51] while observing kinetic energy (changes) via 

the time-of-flight technique, utilizing electron bombardment ionization, 

is presently more comprehensive [52]. The single universal feature of 

beam experiments is kinematic. In view of this fact and the unique 

abilities of the rotating source apparatus, a brief review of the role 

of kinetic energy in crossed beam experiments is in order. 
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For the initial state of an isolated system composed of A parti-

cle(s) of mass and velocity and B particle(s) of mass mg and 

velocity Vg, the total laboratory kinetic energy is 

Although the collision is arranged in the laboratory (LAB), all param­

eters of physical interest concern the center of mass (CM) frame of 

reference, so transforming [53,54] allows one to write 

. (17) 

may be considered the kinetic energy of the hypothetical particle 

containing the total mass of the system, M = + m^, moving in the 

laboratory at velocity R; i.e., 

f ^ MR^ . (18) 

M In the absence of external forces, T is unchanging in time and, con-

CM sequently, uninteresting. represents the initial kinetic energy of 

a hypothetical particle of (initial) reduced mass approaching a 

scattering center (which is the origin of the CM frame) with velocity 

f. : 

T™ = (19) 

where 
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In a (more physical) two particle picture, the collision occurs ('head 

on' in the CM frame) between the A particle approaching with velocity 

Uj^, the B particle moving at velocity Ug, where 

"A " ( HT ) (21) 

and 

"B = - ( - (22) 

The situation may be summarized in velocity space by the Newton diagram, 

given in Fig. 13 and from which one sees 

h -  \  •  '») 

Then, in terms of the experimental parameters, i.e., the laboratory 

speeds and their directions, the initial center of mass kinetic energy 

may be expressed as^ 

" I ^/A^B ^ ( 2 ^ ^ • (24) 

As previously defined, r is the beam intersection angle. Although the 

rotating detector apparati have r fixed at tt/2, the rotating source 

CM 
apparatus allows variation of r  and so the change in T^ ( r )  with beam 

^A vectorial quantity will continue to be indicated by an arrow 
while absence of the arrow indicates magnitude only: 
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crossing angle is of interest. Comparison on the basis of the ratio of 

the initial CM kinetic energy at r to that at r = ir/2 is instructive: 

T^^(r) V. Vp -1 
r w  ^  =  1 - 2  c o s  r  [  (  ̂  +  ̂  )  ]  •  ( 2 5 )  

n'^(r = n/2) "B "A 

If the magnitudes of the initial LAB velocities differ greatly, altering 

the intersection angle will have little effect on the collision. This 

is obvious from the physical situation in which becomes substantially 

greater than Vg such that Vg contributes little to the relative velocity 

r^ regardless of the orientation of Vg. For vastly greater than Vg, 

the B species appear essentially as stationary targets and r^ = V^. 

From the point of view of manipulating the CM kinetic energy, the most 

advantageous case occurs for equal LAB beam speeds; V^ = Vg. For this 

case, one has, for example, 

TJ^(tt/3) 1 T^^(2n/3) 3 

TJ'^(w/2) 2 T^^(Tr/2) 2 

which demonstrates the greatly increased range of accessible collision 

energies. 

Beyond this idealized case of mono-energetic, perfectly defined 

beams is the actual situation involving distributions in beam velocities 

which consequently create uncertainty in Is the acquired asset of 

flexibility in r accompanied by a degradation in the ability to specify 

PM 
? To address this problem, consider the velocity of one of the 

beams, say V^, separated into speed and angular components. Then, the 



www.manaraa.com

149 

relative 'error' in the CM kinetic energy due to a distribution in speed 

of width AV^ is 

yCM . y 

^  " i '  ( n A ; n L r  

where n = (V^/Vg)-  For the special case of n = 1 ,  the dependence on r  

vanishes and 'speed error' affects all beam crossing angles equally. 

Further inspection shows variation in the value for n induces little 

angular dependence for essentially the same physical reason previously 

given. Angular error may be taken as deviation in the crossing angle, 

i.e., Ar, and the induced relative error is 

yCM \ 

Again, if n = 1 ,  for r  = it/2, there is a factor of 1.7  increase in 

sens i t iv i ty  to  angular  aberra t ion over  that  fo r  the usua l  case o f  r  = 

t t /2. This effect is actually due to the more rapid decrease in the CM 

kinetic energy for r less than ir/2. For crossing angles greater than 

t t /2, the situation becomes more tolerant of beam divergence (e.g., if 

n = 1, at r = 2m/3, = (l//3)Ar). Nonetheless, the argument 

demonstrates in utilizing intersection angles less than tr/2 well-defined 

beams become even more highly desirable justifying statements previously 

made in the discussion of beam geometry and source design. 

Although a general discussion of the kinetic preparation of the 

initial state is possible, considerations of the laboratory appearance 
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of the final state can become highly specific. The reason lies in the 

CM 
fact that the final center of mass kinetic energy, , is dependent on 

the change (Ae) of the products final internal state energy from that of 

the reactants initial internal state: 

yCM ^ yCM _ _ (28) 
Û ^ 

The value of A e  is determined by the nature of the particular collision 

process. For example, by definition Ae = 0 for an elastic process, and 

Ae is on the order of 1 meV and 100 meV for rotationally and vibra­

tional ly inelastic collisions, respectively, while Ae ~ ±5 eV (i.e., 

bond energies) for reactive events. Generally, the collision produces 

some product species C, in some final internal state, recoiling in the 

CM frame with speed u^ given by 

"J 
"c 

" c  '  V ' - 2 AS1}1/2 (29) 

where p, is the final state reduced mass for the products C and D of 
6 

masses m^ and m^, respectively. In the LAB frame, C appears with a 
-h 

velocity given by 

= u^ + R . (30) 

This means the maximum LAB angular extent, relative to the center of 

mass vector R, is (see Fig. 13) 

0^ = arcs in "C (31) 
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And the angle between the vector R and the vector is 

0R = arctan ^ , (32) 

- VB ' -

There are several implications, the first of which concerns labora­

tory angular resolution. In the previous discussion of this topic, it 

was emphasized that the largest dimension of the collision zone poten­

tially represented the limitation of the angular resolution. Equation 

(31) implies if |u^| < (R|, the distribution of C in the laboratory is 

limited and the entire collision zone need not be viewed allowing an 

improvement in resolution for the scattered C. However, if |uq1 > |R|, 

'backscattering' occurs in the laboratory and the collision volume must 

be viewed at all permitted angles to obtain the utmost information. A 

second significant implication is the ability of the rotating source 

apparatus to alter the laboratory 'display' of the scattering at a given 

initial CM kinetic energy. This is illustrated in Fig. 14. There are 

two effects arising essentially from the same cause. First, the scat­

tering intensity and, therefore, the angular information may be 'com­

pressed' or 'expanded' in the laboratory via the choice of crossing 

angles and beam speeds. Second, the LAB speeds observed for the product 

may be, to a certain extent, controlled (refer to Eqs. (29) and (30) and 

Fig. lA). Both these kinematic effects are results of the (improved) 

control of the center of mass velocity vector, R, available through the 

additional ability to change r. One may acquire a physical feeling for 
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the character of changes in R by considering the limiting cases of r  = 

0, in which all scattering is strongly focused 'forward' and r = t t , 

for which the laboratory and center of mass frames are of the greatest 

similarity. 

While manipulation of the angular intensity is important in con­

sidering scattering signals, the laboratory speed of the detected product 

is of concern in final state energetic analysis. The rotating source 

apparatus is capable of measuring product kinetic energy by the time-of-

flight (TOP) technique using both single [55-58] and cross-correlation 

[59,60] 'chopping'. The TOP technique is a standard one (e.g., [50]) 

and salient features of the method as applied in the RSA may be illus­

trated for 'single shot' scattered beam modulation. Presently, a 

3.8 • 10"^ cm thick stainless steel disk, 17.8 cm in diameter has 

- 2  1  
2.5 • 10" cm wide slots along its periphery. An A.C. hysteresis 

synchronous [62] motor mounted in a water-cooled copper block (RSM-MC032) 

drives the disc at frequencies on the order of 300 Hz. The gating pro­

vides an open time Aig of about 10 ps (full width at half maximum) for 

the scattered product. After traversing a flight path of length L^, the 

species is ionized somewhere along the ionizer length Lj and, subse­

quently, (the ion is) extracted and counted. Nominally, the flight time 

tp and the path length give the species laboratory speed: 

^Arrangements for the fabrication of thinner discs with highly 
accurate photochemically machined slots in a material with a greater 
ratio of tensile strength to density (i.e., beryllium copper), which 
allows higher angular velocities, have been made [61]. 
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Lp 
V = IT • (33) 

However, the scattered products, for a particular final state, have 

(because the prepared reactant beams have) velocity distributions of 

width AV such that the time-of-arrival is 'smeared' by about the 

nominal flight time tp for the most probable velocity: 

A^p AV 

"tf ' T • <«) 

Further, the TOF signal is distorted by the nonzero width of the gating 

time Aig, and the response time of the detection system If the 

extraction and counting of the ions is relatively rapid, then the major 

contribution to A^^ arises from the finite length of the ionizer: 

A-tg = Lj . (35) 

The contributions of these factors to the width of the time-of-arrival 

A^TOF ® nominal flight time tp becomes the resolution in time: 

(  - r ^  )  =  ( - # )  +  ( - F ^ )  +  ( T ^ )  .  ( 3 6 )  
T T ^F 

The relative severity of these effects may be gauged by rewriting Eq. 

(36), using Eqs. (34) and (35) 

(  - F ^  )  =  ( - r )  +  ( r )  +  ( i r )  •  ( 3 7 )  
T T "-F ^ 

A value for Atg has already been given, as 10 ys, and in the present 

ionizer design Lj ~ 2.5 cm. In the forward position of the detector. 
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Lp 20 cm. For light gases (e.g.. He, H^) at room temperature, or 

oven-generated species, beam speeds (V) are on the order of 10^ cm s~^ 

with speed widths of perhaps 10%. In this example, Eq. (37) gives a 

value of 37 ys for Notice that 95% of the broadening is due to 

the gating function and the finite ionizer length so, due to the sharp­

ness of the speed distribution, this term may be dropped from Eq. (37), 

and the expression for the relative broadening of the TOP signal can be 

approximated as 

( V + 1} . (38) 

L  and v are characteristic lengths and speeds for a particular TOP 

arrangement: 

L s , V . 
4 • 

This interest in the distortion of the TOP signal arises from the 

desire to distinguish final velocities of the products belonging to or 

in different internal states. Explicitly, because =- Ae (refer to 

Eq. (28)) product species will possess different flight times for dif­

ferent final internal states and to resolve this distinction requires 

the broadening of the TOP signal be less than (<l/2) the difference in 

the corresponding arrival times. Therefore, improving Atygp allows 

smaller differences in internal states to be resolved. Ionizer design 

difficulties (e.g., space charge effects) and mechanical considerations 

of the wheel (e.g., motor speed, disc tensile strength) leave little 
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room for improvement in Lj and (perhaps an increase in v by a factor 

of five). Although the RSA allows V to be manipulated to a certain ex­

tent, one cannot count on it in the general case, so an increase in 

flight path remains the only avenue of assured improvement. Randal K. 

Sparks in his description [63] of a new rotating detector apparatus 

(based on the design of Lee, McDonald, LeBreton and Herschbach) incor­

porating an 88.900 cm i.d. bearing states, "The original incentive for 

designing a new apparatus which differed significantly from the earlier 

machines was the desire to increase the velocity resolution for time-of-

flight analysis ..., then it is necessary to achieve greater velocity 

resolution by means of increasing the flight path." Increasing the 

bearing diameter, from the 63.500 cm i.d. of the previous machines, 

allowed lengthening the flight path from 17.3 cm to 30.0 cm approxi­

mately doubling TOP resolution. In the rotating source apparatus, the 

forward position of the detector corresponds to a flight path of 20 cm, 

roughly that of the earlier rotating detector apparati, while the fully 

retracted position is an additional 60 cm further back. This arrange­

ment permits continuously adjustable TOP resolution to allow optimiza­

tion on a case by case basis for state resolution with respect to 

available signal, etc. (up to a factor of 2 1/2 over the "new" RDA). 

Furthermore, because the detector is enclosed in what is essentially a 

separate unit, i.e., the detector chamber, a spacer of the desired 

length can be inserted between the detector chamber flange and (the 

north plate of) the main chamber to provide even longer flight paths 

limited, in principle, only by the wall of the laboratory. 
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However, at some point, the utility of the energy change method 

must be called into question. The resolution obtained by the energy 

change method is roughly 

while state selective techniques have achieved resolution greater by a 

factor of ^60. As the behavior of more complex species (with higher 

state densities) at a greater range of energies becomes examined, state 

to state studies involving energy change become more and more difficult. 

Cognizance of this inevitability motivated the design of the rotating 

source apparatus to be compatible with the (evolving) laser technology. 

This will be touched on in the Summary and Suggestions for Future 

Research. 

Summary and Suggestions for Future Research 

Presently, the rotating source apparatus (RSA) has not matured to 

the point of producing preliminary results. All chambers have been 

assembled and tested and only installation of the detector remains. As 

an important example, the critical seals of the rotating plate assembly 

(e.g., the graphite embedded Tec-Seals) have been tested and even the 

maximum pressure (mid 10"^ Torr range) in the first stage of source 

differential pumping failed to produce a measurable rise in the main 

chamber or source second stage pressures. The RSA is in the middle of 

its fourth year of design and third year of assembly. In view of the 
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expense, complexity, originality of the device and the fact that a 

single researcher has been responsible for the design and assembly, the 

project has progressed rapidly. 

Even a partial summary of the capabilities and flexibility of the 

apparatus is difficult, but the implications of some salient features 

of the design should be emphasized. 

The small beam crossing angles permitted by the present beam source 

chambers allow (threshold) behavior at low collision energies to be 

studied. These experiments and others involving diminutive cross sec­

tions will benefit by the kinematic focusing and adjustable detector 

distance. If the scattering signals are still too low, replacement of 

a flange in the innermost wall (item 4 in Fig. 7a and item 3 in Fig. 7b) 

with an extended 'cap' will allow the detector to advance from ~26 cm 

to within ^21 cm of the collision region. If one is permitted to 

completely sacrifice the third stage detector differential pumping by 

removing the 'cap' or flange altogether a detector-collision region 

distance of ^16 1/2 cm is possible. (Comparison to the fixed detector-

collision region distances of '^21 cm and '\'34 cm of the 'smaller' and 

'larger' rotating detector apparati is instructive.) The beam source 

chambers are removable and for high energy studies (e.g., collisional 

dissociation) involving beam crossing angles greater than or equal to 

90 degrees, replacing them with wider beam source chambers that utilize 

the full 80 degree 'window' throughout their entire height can provide 

substantial conductance gains in the first differential region. 

Studies involving a single beam source, such as photofragmentation, can 
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profit by replacing the rotating plate as well with a larger 'window'. 

Further, by using the opposite rotating plate, up to three stages of 

intense source pumping are conveniently possible in the single beam 

arrangement. However, beyond the highly flexible nature of this design 

with respect to more conventional crossed beam studies is the inherent 

ease with which techniques involving lasers may be incorporated. 

Lasers and the RSA^ 

Drill linger and Zare in a 1969 paper titled Optical Pumping of 

Molecules [64] indicate that the "technique of selective excitation of 

molecular levels also creates the opportunity to prepare oriented or 

aligned samples which may be used as targets for subsequent chemical 

kinetics studies in ... crossed molecular beams." Three years later, 

Zare and co-workers stated, "Reaction scattering studies have been 

greatly stimulated by the advant of the 'supermachine', a molecular beam 

apparatus that includes universal detection by electron-impact ioniza­

tion and mass analysis of the ions. However, this device does not seem 

well-suited for determining the vibrational-rotational distribution of 

the reaction products" [65]. Zare has not been alone in recognizing 

the limitations of state resolution in crossed beam apparati (i.e., 

time-of-flight) or the pursuit of state selective chemistry via laser 

techniques. A variety of approaches and experimental apparati have 

Another suitable light source is synchrotron radiation. Incor­
porating photoionization detection in an apparatus such as this has 
been suggested by R. Grover. 
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rapidly developed. (The rotating detector apparatus, with which the 

reader is by now familiar, has been capable of experiments involving a 

single molecular beam and crossing laser beam [66,67].) Still, in a 

recent monograph devoted to and titled Chemical Dynamics via Molecular 

Beam and Laser Techniques [6S], Bernstein asks, "How can we 'couple' 

lasers with molecular beams?" To the extent that crossed molecular 

beams provide the suitable means for the dynamical study of a process, 

the author's answer, to this somewhat rhetorical question, is the rotat­

ing source apparatus. The design of this apparatus has been based not 

only on improving the proven techniques of the past (e.g., electron 

bombardment ionization and time-of-flight), but on incorporating the 

promising, present state-of-the-art techniques. How lasers are incor­

porated in the RSA is best summarized via Fig. 15. It can be seen that 

almost every point in the beam plane, after the skimmer of either source, 

is conveniently accessible to laser beams introduced either along the 

source axis of rotation through the source second differential region 

or through the rear of the detector chamber via the "10 inch" Confiât 

flange of the detector 'cap'. Optical pumping of the reactant species 

in either beam can be performed by attaching mirrors (or prisms) to the 

bottom of the beam source chamber such that they intercept the laser 

beam entering along the axis of source rotation and redirect it to the 

desired location along the molecular beam. In this manner, reactants 

may be irradiated at any point prior to the collision region regardless 

of the source movement or orientation. The collision zone is even more 

easily accessible and so problems associated with the lifetimes of the 
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prepared reactants can be, to the greatest possible extent, solved. 

Illuminating the products in the collision zone as previously described 

or via a laser beam co-axial with the detector axis (see Fig. 15) arkov/s 

techniques such as laser-induced fluorescence (LIF) to be performed to 

ascertain product state information, as suggested by Zare. In fact, 

preliminary results for the energy dependence of vibrationally inelastic 

collisions between He and 1^ using just this scheme have recently been 

obtained in a pulsed beam rotating source apparatus based on the 

rotating source arrangement of the RSA [69]. Selective photoionization 

of scattered product molecules, via laser multiphoton ionization (MPI), 

is possible anywhere along the detector axis from the collision region 

to the innermost region. Attaching the required optical components to 

the translating detector incorporates MPI with electron bombardment 

ionization and mass spectrometry; the best of both worlds. 

Due to their intensity, monochromaticity, and tunability, lasers 

have become powerful tools for achieving state preparation and detection 

[70]. The crossed beam situation allows the arrangement of well-defined 

collisions between prepared initial states of the reactants and pre­

vents the loss of information contained in the scattered products. 

Indeed, lasers and molecular beams have already proven to be an excel­

lent combination for the detailed study of state selective dynamics. 

And for the future? It is now Bernstein's opportunity to reply [71], 

"Perhaps, then, it is not merely a speculation but a straightforward 

extrapolation to conclude that molecular beam and laser techniques will 

lead to truly dramatic developments in the field of chemical reaction 
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dynamics in the years to come." Advancing laser technology and tech­

nique can only advance the rotating source apparatus and, if the highly 

flexible character of this design is exploited carefully, the prospects 

are indeed promising that this apparatus will be at the forefront of the 

"truly dramatic developments" which await this field. 
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GENERAL CONCLUSIONS 

To have squeezed the universe into a ball 

To roll it towards some overwhelming question. 

T. S. Eliot 

The dilute nature of the beam situation allows highly specific and 

diverse collisions to be prepared and observed as demonstrated by the 

photoionization studies of hydrogen sulfide and its clusters and the 

discourse on the rotating source crossed neutral-neutral molecular beam 

apparatus. However, the strength of the technique is also its weakness 

in that carefully arranged and implemented technology enabling sensitive 

detection of the minute number of interesting events is required. None­

theless, in view of the fundamental and ubiquitous nature of the colli­

sion and the detailed information obtained, these efforts are scien­

tifically wel1-justified. 
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APPENDIX A. PUMPING SPEED AND CONDUCTANCE 

"However well fitted atomic theories may be to 

reproduce certain groups of facts, the physical 

inquirer who has laid to heart Newton's rules 

will only admit those theories as pTovisional 

helps and will strive to attain, in some more 

natural way, a satisfactory substitute." 

Ernst Mach 

What began as unsupported, unpopular and basically daring specula­

tions by Bernoulli, Joule, Clausius, Maxwell and others has developed 

into an aesthetically pleasing and highly useful theory. The early 

experimental work of Perrin, Loschmidt, Gaede, Knudsen, etc. undis-

putedly established the kinetic theory of gases. The study of gas flow 

in tubes, notably by Knudsen [1], led to characterization of the vacuum 

regimes on the basis of the ratio of the mean free path of the molecules 

Ï to some characteristic tube dimension D such as the radius r for 

tubes with circular cross sections. In (crossed) beam apparati, the 

prevailing regime is that of molecular flow for which 

& ^ D 

or, where appropriate, 

I I r 

Because generating molecular beams requires generating gas loads (refer 

to Section I of Part I), one is interested in the rate at which gas 

may be removed. The effective removal rate or effective pumping speed 

for a gas at a particular location is determined by the available 
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pumping speed S and the conductance C: 

. 

Figure A1 shows a semilog plot of versus S/C. Two situations 

are readily apparent. First, the 'pumping speed limited' case where if 

S < J_ 
C 10 

then = S and second, the 'conductance limited' case where if 

§ > 10 , 

then = C. Pump systems represent expensive investments. Figure 

A2 shows the semilog plot of oil diffusion pump price [2], in thousands 

of dollars (K$) versus pumping speed for air, in thousands of liters 

per second (kl/s). It must be emphasized that these are only the dif­

fusion pump prices and the necessary backing pumps, foreline traps, and 

valves, etc. are not included and, when taken into account, greatly 

'accelerate' the illustrated trend. For ultra-high, ultra-clean 

vacuums, diffusion pumps are unsuitable and other pumping techniques 

must be employed. One type of inherently clean ultra-high vacuum 

pumping is provided by ion pumps (which represent the only active, 

isolated pumping system that, more or less, permanently removes gas 

species). Figure A3 shows the price, in thousands of dollars (K$), 

versus pumping speed for air in liters per second (1/s) for two ion 

pump designs [3]. All pumping speeds are species dependent and ion 

pumps are perhaps an extreme example. For instance, the pumping speed 
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for argon is about 2% of that for air in the conventional ion pump 

design (x of Fig. A3) while special design (o of Fig. A3) can raise 

this to about 20%. In view of the expense, the pumping speed actually 

available, and concrete experimental demands, one attempts to obtain 

the highest return for one's investment by efficiently using the avail­

able pumping speed. Figure A1 provides an indication as to how suc­

cessful one has been or will be. The luxury of the 'pumping speed 

limited' condition is usually the result of a design 'accident' in which 

the mechanical connection to the pump is beneficially large. On the 

other hand, the unfavorable 'conductance limited' condition represents 

poor design judgment or an unavoidable situation. 

In the molecular flow regime, the value of the conductance depends 

on the temperature and the particular species involved. Consider the 

well-known result of the kinetic theory of gases for effusive flow of a 

gas through an infinitesimally thick circular orifice of radius r 

(into a perfect vacuum): 

Vç. p 
" "s ( IT ) 

The throughput Qg for the species S is proportional to the density n^ 

and average speed of the S molecules. Notice the first term is 

proportional to the pressure of the gas, the second term to the nature 

of the gas, and the third term reflects the nature of the orifice. This 

allows the expression to be recast as 
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where Pg is the pressure of and Cg is the conductance for the species 

S at some temperature. For air at ^300K, the conductance, in liters 

per second, for an infinitesimally thick circular orifice of radius r, 

in 

C(0) = 35.7 r^ 

Unfortunately, pumps are not attached to vacuum systems by infinitely 

short connections. The additional resistance to gas flow due to the 

length L of a cylindrical tube has been calculated by Clausing [4]. 

The Clausing factor K, a function of the ratio of the length L of the 

tube to its radius, corrects the orifice conductance C(0) to that of 

the tube C(L): 

C(L) = K C(0) 

= K (36.3) / 

Figure A4 shows a semilog plot of the Clausing factor versus the ratio 

L/r. Notice conductance is lost extremely rapidly at first. For 

example, when the tube length has become equal to the tube diameter, 

the (tube) conductance has dropped to ^50% of the orifice, however, ex­

tending the tube length to twice the diameter only reduces the conduct­

ance an additional 15%. This knowledge has engendered the rule of thumb 

for vacuum connections "as short and as large as possible" which is of 

little use in making concrete design decisions. Figure A5 shows the 

semilog plot of the rate of change of K with the ratio L/r, AK/A(L/r), 

versus L/r. From this figure, one sees K begins to decrease less 
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rapidly with tube length for L/r ^ 3. The impact of this is that in 

design the struggle to increase conductance is very profitable in the 

neighborhood of L/r ^ 3, but for L/r > 3, sizable gain is very difficult 

to come by. This represents a much more concrete rule for vacuum 

system design. 

It is possible to take advantage of this property of conductance 

[5]. The outermost square aperture of the detector chamber has a width 

Wp and a conductance C^. The throughput into the first region of 

the detector is 

where is the main chamber pressure. If the effective pumping speed 

'behind' this aperture in the detector's first region is S^, then the 

pressure in the first region is 

However, if, instead of being mounted directly on the detector faceplate, 

the outermost aperture is mounted at the end of a tube of length 2Wp and 

diameter /2 extending from the faceplate, then the conductance between 

the main chamber and the first detector regime can be lowered approxi­

mately 60%. This cuts the throughput into this region roughly in 

half and, therefore, reduces the pressure in the first detector region 

Pj to about half that obtained in the previous arrangement. Essentially, 

this is equivalent to doubling the effective pumping speed in the 

first region. Obviously, the idea (and the tube length) can be extended. 
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Properly utilizing this technique can eliminate the advantages and the 

difficulties involved in using adjustable detector aperatures. 
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APPENDIX B. RSA EXPERIMENTAL CONTROL 

A great deal of the hardship and complexity involved in operating 

the rotating source apparatus has been eliminated by an elegant control 

and data processing system designed by Harold Skank of the Ames Labora­

tory Instrumentation Services Group. The two stepping motors, which 

position the sources, and the time-of-flight motor are all under micro­

processor control. Also, the signal in 'single shot' and cross-correla­

tion time-of-flight studies and differential scattering experiments is 

processed by the unit. Herein a brief description by the engineer 

responsible, Harold Skank, is given^. 

Prest-X System Description 

The Prest-X system was designed to provide control and data acqui­

sition capabilities for a dual source, crossed beam, kinematics chemistry 

experiment. The system consists of a 6809 microprocessor, functioning 

as the system central processor unit (CPU), the usual random access 

memory (RAM), sixteen kilobytes of control read-only memory (ROM), a 

teleprinter serial channel, and a number of special input-output (I/O) 

ports dedicated to hardware required to control the experiment. The 

CPU runs a menu driven system, operating under a ROM based tasking 

system specifically designed for experiment support. 

Further details are available by contacting Harold Skank, Ames 
Laboratory Instrumentation Services Group, Ames Laboratory, Iowa State 
University, Ames, Iowa 50011. 
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The decision to design the software based upon a menu driven sys­

tem was prompted by the need to reduce the training time required for 

succeeding users of the experiment facilities. With this in mind, a 

menu driven system provides a natural vehicle to convey prompts and 

queries, greatly reducing the need for learning a special command 

language. 

The following discussion will describe specific items of the de­

sign in greater detail. 

Prest-X Hardware 

The central decision making element in the experiment control sys­

tem is a 6809 microprocessor. The implementation is a design by the 

Ames Laboratory Instrumentation Services Group, and was developed about 

a local bus convention to simplify system extensions. Thus, the system 

hardware is modular with only the CPU requiring a specific bus slot 

dedicated to its use. Other elements in the design (although they are 

not all necessary for this experiment) include eight-kilobyte RAM and 

ROM boards, serial communication boards, a parallel communication board, 

a triple sixteen-bit timer/counter board, a dual channel, dual mode 

digital to analog converter board (C/A), and various other support 

circuits, including other processor configurations. 

In the Prest-X design, the following specific I/O facilities exist 

and are used as described below: 

I. Three triple sixteen-bit timer/counter boards used for: 

1. Phase-lock control of the chopper system (4 sixteen-bit 

sections). 
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2. Variable modulo clock for angle motor step control (1 six-

teen-bit section). 

3. Dual data counters for the molecular beam timer and Gate 

system (2 sixteen-bit sections). 

4. Monitor timer for multi-channel scaler operations (2 six­

teen-bit sections). 

II. Five twenty-bit parallel interface boards used for: 

1. Multi-channel scaler data transfers (1 board). 

2. Multi-channel scaler control transfers (1 board). 

3. X-Y display of stored spectrum date (1 board). 

4. Source beam motor control, limit switch monitor, and moni­

tor timer control (1 board). 

5. Molecular beam timer and gate control (2-bits of 1 board). 

III. One dual D/A channel (driven by one of the parallel interface 

boards above), providing two channels of 12-bit resolution 

digital to analog conversion. The design incorporates a syn­

chronization feature whereby the inputs to two D/A components 

may be changed at the same time, resulting in sharper display 

of digital data. 

IV. A two-board multi-channel scaler (controlled by two of the 

parallel interface boards) providing up to 4096 channels of 

16-bit data acquisition. In the Prest-X system, the multi­

channel scaler (MCS) uses only 1024 channels, and the advance 

from channel to channel is driven from the chopper drive sys­

tem. Special synchronization circuitry, driven by an optical 
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sensor, insures that individual sweeps are started at the proper 

time. Control commands (accessible from software) permit 

transfer of stored data from the MCS to the host processor. 

This transfer is done in a destructive-read fashion, thereby 

providing a means of clearing the MCS data memory area as well. 

Start commands are synchronized with the optical sensor signal 

from the chopper disk, and stop commands are executed only at 

the end of complete traces, so that only entire traces are 

recorded. In addition, other special circuitry monitors the 

most significant data bit and provides a flag to the host 

processor when data has reached half-scale, permitting transfer 

to the host processor before data loss occurs. 

High speed data latches are used to reduce the scaler dead 

time to approximately 100 nanoseconds, while memory cycle 

timing considerations limit the channel dwell time to an 

approximate minimum of 815 nanoseconds. Fully synchronous 

counters are used to reduce the state transition time after a 

count pulse. These counters, along with their channel syn­

chronization circuitry, limit the maximum count-rate within a 

channel to approximately 11,500,000 counts per second. 
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